Lesson 7 Practice Problems

1. Here is the recursive definition of a sequence: $f(1)=10, f(n)=f(n-1)-1.5$ for $n \geq 2$.
a. Is this sequence arithmetic, geometric, or neither?
b. List at least the first five terms of the sequence.
c. Graph the value of the term $f(n)$ as a function of the term number n for at least the first five terms of the sequence.
2. An arithmetic sequence k starts $12,6, \ldots$
a. Write a recursive definition for this sequence.
b. Graph at least the first five terms of the sequence.
3. An arithmetic sequence a begins 11, 7, ..
a. Write a recursive definition for this sequence using function notation.
b. Sketch a graph of the first 5 terms of a.
c. Explain how to use the recursive definition to find $a(100)$. (Don't actually determine the value.)
4. A geometric sequence g starts $80,40, \ldots$
a. Write a recursive definition for this sequence using function notation.
b. Use your definition to make a table of values for $g(n)$ for the first 6 terms.
c. Explain how to use the recursive definition to find $g(100)$. (Don't actually determine the value.)
(From Unit 1, Lesson 6.)
5. Match each recursive definition with one of the sequences.
A. $h(1)=1, h(n)=2 \cdot h(n-1)+1$ for
6. $80,40,20,10,5$
$n \geq 2$
7. $1,2,4,8,16$
B. $p(1)=1, p(n)=2 \cdot p(n-1)$ for $n \geq 2$
8. $1,3,7,15,31$
C. $a(1)=80, a(n)=\frac{1}{2} \cdot a(n-1)$ for $n \geq 2$
(From Unit 1, Lesson 5.)
9. For each sequence, decide whether it could be arithmetic, geometric, or neither.
a. $25,5,1, \ldots$
b. $25,19,13, \ldots$
c. $4,9,16, \ldots$
d. $50,60,70, \ldots$
e. $\frac{1}{2}, 3,18, \ldots$

For each sequence that is neither arithmetic nor geometric, how can you change a single number to make it an arithmetic sequence? A geometric sequence?
(From Unit 1, Lesson 3.)

