Lesson 8 Practice Problems

1. A sequence is defined by $f(0)=-20, f(n)=f(n-1)-5$ for $n \geq 1$.
a. Explain why $f(1)=-20-5$.
b. Explain why $f(3)=-20-5-5-5$.
c. Complete the expression: $f(10)=-20-$ \qquad . Explain your reasoning.
2. A sequence is defined by $f(0)=-4, f(n)=f(n-1)-2$ for $n \geq 1$. Write a definition for the $n^{\text {th }}$ term of the sequence.
3. Here is the recursive definition of a sequence: $f(1)=3, f(n)=2 \cdot f(n-1)$ for $n \geq 2$.
a. Find the first 5 terms of the sequence.
b. Graph the value of the term as a function of the term number.
c. Is the sequence arithmetic, geometric, or neither? Explain how you know.

(From Unit 1, Lesson 7.)
4. Here is a graph of sequence M. Define M recursively using function notation.

(From Unit 1, Lesson 6.)
5. Write the first five terms of each sequence. Determine whether each sequence is arithmetic, geometric, or neither.
a. $a(1)=5, a(n)=a(n-1)+3$ for $n \geq 2$.
b. $b(1)=1, b(n)=3 \cdot b(n-1)$ for $n \geq 2$.
c. $c(1)=3, c(n)=-c(n-1)+1$ for $n \geq 2$.
d. $d(1)=5, d(n)=d(n-1)+n$ for $n \geq 2$.

(From Unit 1, Lesson 5.)

6. Here is the graph of a sequence:
a. Is this sequence arithmetic or geometric? Explain how you know.
b. List at least the first five terms of the sequence.
c. Write a recursive definition of the sequence.

(From Unit 1, Lesson 7.)
