

Lesson 8 Practice Problems

- 1. A sequence is defined by f(0) = -20, f(n) = f(n-1) 5 for $n \ge 1$.
 - a. Explain why f(1) = -20 5.
 - b. Explain why f(3) = -20 5 5 5.
 - c. Complete the expression: f(10) = -20 -_____. Explain your reasoning.
- 2. A sequence is defined by f(0) = -4, f(n) = f(n-1) 2 for $n \ge 1$. Write a definition for the n^{th} term of the sequence.

- 3. Here is the recursive definition of a sequence: f(1) = 3, $f(n) = 2 \cdot f(n-1)$ for $n \ge 2$.
 - a. Find the first 5 terms of the sequence.
 - b. Graph the value of the term as a function of the term number.
 - c. Is the sequence arithmetic, geometric, or neither? Explain how you know.

(From Unit 1, Lesson 7.)

4. Here is a graph of sequence M. Define M recursively using function notation.

(From Unit 1, Lesson 6.)

5. Write the first five terms of each sequence. Determine whether each sequence is arithmetic, geometric, or neither.

a.
$$a(1) = 5$$
, $a(n) = a(n-1) + 3$ for $n \ge 2$.

b.
$$b(1) = 1$$
, $b(n) = 3 \cdot b(n-1)$ for $n \ge 2$.

c.
$$c(1) = 3$$
, $c(n) = -c(n-1) + 1$ for $n \ge 2$.

d.
$$d(1) = 5$$
, $d(n) = d(n-1) + n$ for $n \ge 2$.

(From Unit 1, Lesson 5.)

- 6. Here is the graph of a sequence:
 - a. Is this sequence arithmetic or geometric? Explain how you know.

c. Write a recursive definition of the sequence.

(From Unit 1, Lesson 7.)