Lesson 4 Practice Problems

1. a. Find the exact length of each line segment.

b. Estimate the length of each line segment to the nearest tenth of a unit. Explain your reasoning.
2. Plot each number on the x-axis: $\sqrt{16}, \sqrt{35}, \sqrt{66}$. Consider using the grid to help.

3. Use the fact that $\sqrt{7}$ is a solution to the equation $x^{2}=7$ to find a decimal approximation of $\sqrt{7}$ whose square is between 6.9 and 7.1.
4. a. Explain how you know that $\sqrt{37}$ is a little more than 6 .
b. Explain how you know that $\sqrt{95}$ is a little less than 10.
c. Explain how you know that $\sqrt{30}$ is between 5 and 6 .
5. Plot each number on the number line:

$$
6, \sqrt{83}, \sqrt{40}, \sqrt{64}, 7.5
$$

6. The equation $x^{2}=25$ has two solutions. This is because both $5 \cdot 5=25$, and also $-5 \cdot-5=25$. So, 5 is a solution, and also -5 is a solution.

Select all the equations that have a solution of -4:
A. $10+x=6$
B. $10-x=6$
C. $-3 x=-12$
D. $-3 x=12$
E. $8=x^{2}$
F. $x^{2}=16$
7. Find all the solutions to each equation.
a. $x^{2}=81$
b. $x^{2}=100$
c. $\sqrt{x}=12$
8. The points $(12,23)$ and $(14,45)$ lie on a line. What is the slope of the line?

