

Lesson 4 Practice Problems

1. a. Find the exact length of each line segment.

b. Estimate the length of each line segment to the nearest tenth of a unit. Explain your reasoning.

2. Plot each number on the *x*-axis: $\sqrt{16}$, $\sqrt{35}$, $\sqrt{66}$. Consider using the grid to help.

3. Use the fact that $\sqrt{7}$ is a solution to the equation $x^2 = 7$ to find a decimal approximation of $\sqrt{7}$ whose square is between 6.9 and 7.1.

- 4. a. Explain how you know that $\sqrt{37}$ is a little more than 6.
 - b. Explain how you know that $\sqrt{95}$ is a little less than 10.
 - c. Explain how you know that $\sqrt{30}$ is between 5 and 6.
- 5. Plot each number on the number line: $6, \sqrt{83}, \sqrt{40}, \sqrt{64}, 7.5$

6. The equation $x^2 = 25$ has *two* solutions. This is because both $5 \cdot 5 = 25$, and also $-5 \cdot -5 = 25$. So, 5 is a solution, and also -5 is a solution.

Select **all** the equations that have a solution of -4:

A.
$$10 + x = 6$$

B. $10 - x = 6$
C. $-3x = -12$
D. $-3x = 12$
E. $8 = x^{2}$
F. $x^{2} = 16$

7. Find all the solutions to each equation.

a.
$$x^2 = 81$$

b. $x^2 = 100$
c. $\sqrt{x} = 12$

8. The points (12, 23) and (14, 45) lie on a line. What is the slope of the line?

(From Unit 5, Lesson 4.)