Unit 6 Lesson 1: Inputs and Outputs

1 Dividing by 0 (Warm up)

Student Task Statement

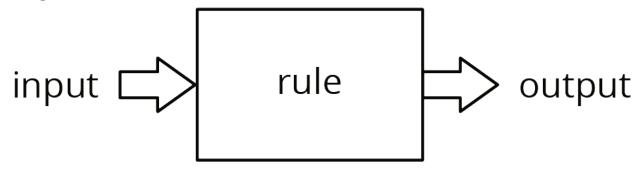
Study the statements carefully.

- $12 \div 3 = 4$ because $12 = 4 \cdot 3$
- $6 \div 0 = x$ because $6 = x \cdot 0$

What value can be used in place of x to create true statements? Explain your reasoning.

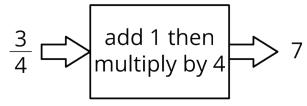
2 Guess My Rule

Student Task Statement

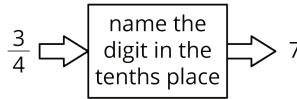

Keep the rule cards face down. Decide who will go first.

- 1. Player 1 picks up a card and silently reads the rule without showing it to Player 2.
- 2. Player 2 chooses an integer and asks Player 1 for the result of applying the rule to that number.
- 3. Player 1 gives the result, without saying how they got it.
- 4. Keep going until Player 2 correctly guesses the rule.

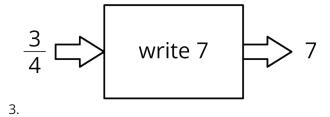
After each round, the players switch roles.


3 Making Tables

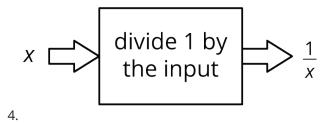
Images for Launch


Student Task Statement

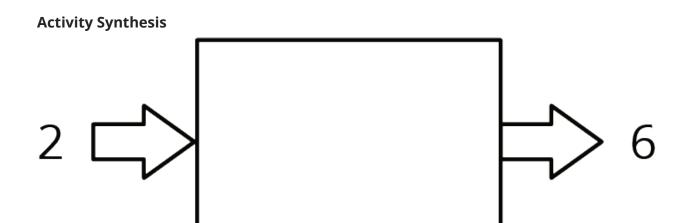
For each input-output rule, fill in the table with the outputs that go with a given input. Add two more input-output pairs to the table.


1.

input	output
$\frac{3}{4}$	7
2.35	
42	


2.

input	output
3/4	7
2.35	
42	



input	output
$\frac{3}{4}$	7
2.35	
42	

Pause here until your teacher directs you to the last rule.

input	output
$\frac{3}{7}$	$\frac{7}{3}$
1	
0	

