Lesson 10 Practice Problems

1. a. What is the volume of a cube with a side length of
i. 4 centimeters?
ii. $\sqrt[3]{11}$ feet?
iii. s units?
b. What is the side length of a cube with a volume of
i. 1,000 cubic centimeters?
ii. 23 cubic inches?
iii. v cubic units?
2. Write an equivalent expression that doesn't use a cube root symbol.
a. $\sqrt[3]{1}$
b. $\sqrt[3]{216}$
c. $\sqrt[3]{8000}$
d. $\sqrt[3]{\frac{1}{64}}$
e. $\sqrt[3]{\frac{27}{125}}$
f. $\sqrt[3]{0.027}$
g. $\sqrt[3]{0.000125}$
3. Find the positive solution to each equation. If the solution is irrational, write the solution using square root or cube root notation.
a. $t^{3}=216$
b. $a^{2}=15$
c. $m^{3}=8$
d. $c^{3}=343$
e. $f^{3}=181$
4. For each cube root, find the two whole numbers that it lies between.
a. $\sqrt[3]{11}$
b. $\sqrt[3]{80}$
c. $\sqrt[3]{120}$
d. $\sqrt[3]{250}$
5. Order the following values from least to greatest:

$$
\sqrt[3]{530}, \sqrt{48}, \pi, \sqrt{121}, \sqrt[3]{27}, \frac{19}{2}
$$

6. The equation $x^{2}=25$ has two solutions. This is because both $5 \cdot 5=25$, and also $-5 \cdot-5=25$. So, 5 is a solution, and also -5 is a solution. But! The equation $x^{3}=125$ only has one solution, which is 5 . This is because $5 \cdot 5 \cdot 5=125$, and there are no other numbers you can cube to make 125. (Think about why -5 is not a solution!)

Find all the solutions to each equation.
a. $x^{3}=8$
b. $\sqrt[3]{x}=3$
c. $x^{2}=49$
d. $x^{3}=\frac{64}{125}$

