

Lesson 12 Practice Problems

1. Elena and Han are discussing how to write the repeating decimal $x = 0.13\overline{7}$ as a fraction. Han says that $0.13\overline{7}$ equals $\frac{13764}{99900}$. "I calculated $1000x = 137.77\overline{7}$ because the decimal begins repeating after 3 digits. Then I subtracted to get 999x = 137.64. Then I multiplied by 100 to get rid of the decimal: 99900x = 13764. And finally I divided to get $x = \frac{13764}{99900}$." Elena says that $0.13\overline{7}$ equals $\frac{124}{900}$. "I calculated $10x = 1.37\overline{7}$ because one digit repeats. Then I subtracted to get 9x = 1.24. Then I did what Han did to get 900x = 124 and $x = \frac{124}{900}$."

Do you agree with either of them? Explain your reasoning.

- 2. How are the numbers 0.444 and $0.\overline{4}$ the same? How are they different?
- 3. a. Write each fraction as a decimal. i. $\frac{2}{3}$

ii.
$$\frac{126}{37}$$

b. Write each decimal as a fraction.

i. 0.75

ii. 0.3

4. Write each fraction as a decimal.

a. $\frac{5}{9}$ b. $\frac{5}{4}$ c. $\frac{48}{99}$ d. $\frac{5}{99}$ e. $\frac{7}{100}$ f. $\frac{53}{90}$

5. Write each decimal as a fraction.

a. 0.7 b. 0.2 c. 0.13 d. 0.14 e. 0.03 f. 0.638 g. 0.524

h. $0.1\overline{5}$

6. $2.2^2 = 4.84$ and $2.3^2 = 5.29$. This gives some information about $\sqrt{5}$.

Without directly calculating the square root, plot $\sqrt{5}$ on all three number lines using successive approximation.

