

Lesson 16: Compare & Contrast

• Let's analyze data

16.1: Math Talk: Measuring Up

What is the distance between the markings?

16.2: Compare & Contrast

Here are the shoe sizes from two cohorts in the military.

Cohort A:

Cohort B:

1. Is there any overlap between the two data sets? Explain your reasoning.

2. Which cohort has more variability?

3. Does at least one person from cohort A have a bigger shoe size than someone from cohort B? Explain your reasoning.

4. Compare the measures of center.

8

16.3: Compare & Contrast Continued

Here are the shoes sizes of some grade 9 and grade 12 students.

Grade 9 shoe sizes:

6	8	6.5	7.5	7	6.5	9	6
8.5	7.5	8	10	11	8	9	
Grade 12 s	shoe sizes:						

 10
 9
 10.5
 8.5
 10
 9
 9.5

 8
 11
 9
 9.5
 11
 10.5
 8.5

1. Create a box plot, dot plot, or histogram to represent both sets of data.

2. Describe the distribution shapes.

3. Complete the table.

	mean	median	IQR	standard deviation
grade 9 shoe sizes				
grade 12 shoe sizes				

- 4. Does one grade's shoe sizes have more variation than the other? Explain how you know.
- 5. Compare the measures of center for the two sets of shoe sizes.
- 6. Do the distributions overlap? Use the data display you created to explain how you know.