Lesson 13 Practice Problems

1. For each trigonometric function, indicate the amplitude and midline.
a. $y=2 \sin (\theta)$
b. $y=\cos (\theta)-5$
c. $y=1.4 \sin (\theta)+3.5$
2. Here is a graph of the equation

$$
y=2 \sin (\theta)-3
$$

a. Indicate the midline on the graph.
b. Use the graph to find the amplitude of this sine equation.

3. Select all trigonometric functions with an amplitude of 3.
A. $y=3 \sin (\theta)-1$
B. $y=\sin (\theta)+3$
C. $y=3 \cos (\theta)+2$
D. $y=\cos (\theta)-3$
E. $y=3 \sin (\theta)$
F. $y=\cos (\theta-3)$
4. The center of a windmill is 20 feet off the ground and the blades are 10 feet long.

rotation angle of windmill	vertical position of P in feet
$\frac{\pi}{6}$	
$\frac{\pi}{3}$	
$\frac{\pi}{2}$	
π	
$\frac{3 \pi}{2}$	

a. Fill out the table showing the vertical position of P after the windmill has rotated through the given angle.
b. Write an equation for the function f that describes the relationship between the angle of rotation θ and the vertical position of the point $P, f(\theta)$, in feet.
5. The measure of angle θ, in radians, satisfies $\sin (\theta)<0$. If θ is between 0 and 2π what can you say about the measure of θ ?
(From Unit 6, Lesson 9.)
6. Which rotations, with center O, take P to Q ? Select all that apply.

A. $\frac{3 \pi}{4}$ radians
B. $\frac{15 \pi}{4}$ radians
C. $\frac{7 \pi}{4}$ radians
D. $\frac{11 \pi}{4}$ radians
E. $\frac{23 \pi}{4}$ radians
(From Unit 6, Lesson 10.)
7. The picture shows two points P and Q on the unit circle.

Explain why the tangent of P and Q is 2 .

(From Unit 6, Lesson 12.)

