Lesson 13: Multiplying Complex Numbers • Let's multiply complex numbers. ### **13.1:** *i* Squared Write each expression in the form a + bi, where a and b are real numbers. - 1. 4*i* 3*i* - 2. $4i \cdot -3i$ - $3. -2i \cdot -5i$ - $4. -5i \cdot 5i$ - 5. $(-5i)^2$ ### **13.2: Multiplying Imaginary Numbers** Take turns with your partner to match an expression in column A with an equivalent expression in column B. - For each match that you find, explain to your partner how you know it's a match. - For each match that your partner finds, listen carefully to their explanation. If you disagree, discuss your thinking and work to reach an agreement. | В | |-------------| | -9 | | 35 <i>i</i> | | -35 | | 1 | | 9 | | -3 | | -1 | | -8 <i>i</i> | | | ## **13.3: Multiplying Complex Numbers** Write each product in the form a + bi, where a and b are real numbers. 1. $$(-3 + 9i)(5i)$$ 2. $$(8 + i)(-5 + 3i)$$ $$3. (3 + 2i)^2$$ $$4.(3+2i)(3-2i)$$ #### Are you ready for more? On October 16, 1843, while walking across the Broom Bridge in Dublin, Ireland, Sir William Rowan Hamilton came up with an idea for numbers that would work sort of like complex numbers. Instead of just the number i (and its opposite -i) squaring to give -1, he imagined three numbers i, j, and k (each with an opposite) that squared to give -1. Let w = 2 + 3i - j and z = 2i + 3k. Write each given expression in the form a + bi + cj + dk. - 1. w + z - 2. *wz*. - 3. *zw* #### **Lesson 13 Summary** To multiply two complex numbers, we use the distributive property: $$(2+3i)(4+5i) = 8+10i+12i+15i^2$$ Remember that $i^2 = -1$, so: $$(2+3i)(4+5i) = 8+10i+12i-15$$ When we add the real parts together and the imaginary parts together, we get: $$(2+3i)(4+5i) = -7 + 22i$$