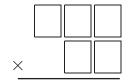


# **Lesson 7: Build Multiplication Fluency**

• Let's multiply multi-digit whole numbers using the standard algorithm.


## Warm-up: Notice and Wonder: Same Solution

What do you notice? What do you wonder?

|    |   |    |   | 3 |   |
|----|---|----|---|---|---|
|    |   |    |   | 5 |   |
|    |   |    |   | 2 | 8 |
|    |   | X  | 4 | 1 | 7 |
|    |   |    | 1 |   |   |
|    |   |    | 1 | 9 | 6 |
|    |   |    | 2 | 8 | 0 |
| +_ | 1 | 1, | 2 | 0 | 0 |
|    | 1 | 1, | 6 | 7 | 6 |



### 7.1: Greatest Product



#### Directions:

- Partner A chooses a number card and writes the number in one of the blanks for Round 1.
- Partner B does the same.
- Repeat until each partner has a two-digit by three-digit multiplication problem.
- Find the product.
- The partner with the greater product wins a point.
- The partner with the most points after 5 rounds wins the game.



### 7.2: Desperately Seeking 9 New Units

Tyler notices that when he uses the standard algorithm and composes a new unit, sometimes there is 1 new unit, sometimes 2, all the way up to 8. He has not seen an example with 9 of the new unit.

1. For each of these products, how many of each new unit do you compose?

a. 
$$256 \times 5$$

b. 
$$587 \times 8$$

c. 
$$809 \times 9$$

2. Do you think it is possible to compose 9 of a new unit with the standard multiplication algorithm?