Lesson 9: Recording Partial Products: One-digit and Three- or Four-digit Factors

- Let's analyze and try an algorithm that uses partial products.

Warm-up: Which One Doesn't Belong: Expressions Galore

Which one doesn't belong?
A. 7×50
B. $(3 \times 50)+(4 \times 50)$
C. $(5 \times 10) \times 7$
D. $50+50+50+50+50+50+50$

9.1: An Algorithm for Noah

1. Noah drew a diagram and wrote expressions to show his thinking as he multiplied two numbers.

$$
\begin{aligned}
& 7 \times 124 \\
& 7 \times(100+20+4) \\
& (7 \times 100)+(7 \times 20)+(7 \times 4) \\
& 700+140+28
\end{aligned}
$$

$$
700+140+28=868
$$

How does each expression represent Noah's diagram? Be prepared to share your thinking with a partner.
2. Later, Noah learned another way to record the multiplication, as shown here.

Make sense of each step of the calculations and record your thoughts. Be prepared to explain Noah's steps to a partner.
3. Complete the diagram to find the value of 217×8. Use Noah's recording method to check your work.

2	1	7
		8

$$
\begin{aligned}
& 8 \times 7 \\
& 8 \times 10 \\
&+\quad 8 \times 200 \\
& \hline
\end{aligned}
$$

9.2: Try an Algorithm with Partial Products

Noah and Mai want to find the value of $8 \times 3,419$. They recorded their steps in different ways, as shown.

Noah
 Mai

	$3,4 \quad 1 \quad 9$				
\times					
	2		0	0	0
			2	0	0
				8	0
+				7	2

1. How are Mai's and Noah's notation alike? How are they different?
2. Use a diagram to show what each of the partial products $72,80,3,200$ and 24,000 represent. Then, find the value of $8 \times 3,419$.
3. Find the value of each expression. For at least one expression, use the algorithm that Noah used. Show your reasoning.
a. $4 \times 5,342$
b. 7×983
