

Lesson 9: Recording Partial Products: One-digit and Three- or Four-digit Factors

• Let's analyze and try an algorithm that uses partial products.

Warm-up: Which One Doesn't Belong: Expressions Galore

Which one doesn't belong?

A. 7×50

B. $(3 \times 50) + (4 \times 50)$

C. $(5 \times 10) \times 7$

D. 50 + 50 + 50 + 50 + 50 + 50 + 50

9.1: An Algorithm for Noah

1. Noah drew a diagram and wrote expressions to show his thinking as he multiplied two numbers.

700 + 140 + 28 = 868

 7×124 $7 \times (100 + 20 + 4)$ $(7 \times 100) + (7 \times 20) + (7 \times 4)$ 700 + 140 + 28

How does each expression represent Noah's diagram? Be prepared to share your thinking with a partner.

2. Later, Noah learned another way to record the multiplication, as shown here.

Make sense of each step of the calculations and record your thoughts. Be prepared to explain Noah's steps to a partner.

3. Complete the diagram to find the value of 217×8 . Use Noah's recording method to check your work.

9.2: Try an Algorithm with Partial Products

Noah and Mai want to find the value of $8 \times 3,419$. They recorded their steps in different ways, as shown.

						Mai						
		3,	4	1	9				3,	4	1	9
×					8		×					8
				7	2			2	4,	0	0	0
				8	0				3,	2	0	0
		3,	2	0	0						8	0
+	2	4,	0	0	0		+				7	2

1. How are Mai's and Noah's notation alike? How are they different?

2. Use a diagram to show what each of the partial products 72, 80, 3,200 and 24,000 represent. Then, find the value of $8 \times 3,419$.

Noah

3. Find the value of each expression. For at least one expression, use the algorithm that Noah used. Show your reasoning.

a. $4 \times 5,342$

b. 7×983