

Lesson 16 Practice Problems

- 1. What number should be added to the expression $x^2 15x$ to result in an expression equivalent to a perfect square?
 - A. -7.5
 - B. 7.5
 - C. -56.25
 - D. 56.25
- 2. Noah uses the quadratic formula to solve the equation $2x^2 + 3x 5 = 4$. He finds x = -2.5 or 1. But, when he checks his answer, he finds that neither -2.5 nor 1 are solutions to the equation. Here are his steps:

$$a = 2$$
, $b = 3$, $c = -5$

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot -5}}{2 \cdot 2}$$

$$x = \frac{-3 \pm \sqrt{49}}{4}$$

$$x = -2.5 \text{ or } 1$$

- a. Explain what Noah's mistake was.
- b. Solve the equation correctly.

3. Solve each quadratic equation with the method of your choice.

a.
$$x^2 - 2x = -1$$

b.
$$x^2 + 8x + 14 = 23$$

c.
$$x^2 - 15 = 0$$

d.
$$7x^2 - 2x - 5 = 0$$

e.
$$2x^2 + 12x = 8$$

4. What are the solutions to the equation $x^2 - 4x = -3$?

A.
$$\frac{4\pm\sqrt{16-4\cdot0\cdot-3}}{2\cdot0}$$

B.
$$\frac{4\pm\sqrt{16-4\cdot1\cdot-3}}{2\cdot1}$$

$$\mathsf{C.}\ \frac{4\pm\sqrt{16-4\cdot1\cdot3}}{2\cdot1}$$

D.
$$\frac{-4\pm\sqrt{16-4\cdot1\cdot3}}{2\cdot1}$$

- 5. Which expression is equivalent to $\sqrt{-23}$?
 - A. -23*i*
 - B. 23*i*
 - C. $-i\sqrt{23}$
 - D. $i\sqrt{23}$

(From Unit 3, Lesson 11.)

- 6. Write each expression in the form a + bi, where a and b are real numbers.
 - a. $5i^2$
 - b. $i^2 \cdot i^2$
 - c. $(-3i)^2$
 - d. 7 4*i*
 - e. (5+4i) (-3+2i)

(From Unit 3, Lesson 12.)

- 7. Let m = (7 2i) and k = 3i. Write each expression in the form a + bi, where a and b are real numbers.
 - a. k m
 - b. k^2
 - c. m^2
 - $d.k \cdot m$

(From Unit 3, Lesson 13.)