Unit 2 Lesson 3: Defining Equivalent Ratios

1 Dots and Half Dots (Warm up)

Student Task Statement

Dot Pattern 1:

Dot Pattern 2:

2 Tuna Casserole

Student Task Statement

Here is a recipe for tuna casserole.

Ingredients

- 3 cups cooked elbow-shaped pasta
- 6 ounce can tuna, drained
- 10 ounce can cream of chicken soup
- 1 cup shredded cheddar cheese
- $1\frac{1}{2}$ cups French fried onions

Instructions

Combine the pasta, tuna, soup, and half of the cheese. Transfer into a 9 inch by 18 inch baking dish. Put the remaining cheese on top. Bake 30 minutes at 350 degrees. During the last 5 minutes, add the French fried onions. Let sit for 10 minutes before serving.

- 1. What is the ratio of the ounces of soup to the cups of shredded cheese to the cups of pasta in one batch of casserole?
- 2. How much of each of these 3 ingredients would be needed to make:
 - a. twice the amount of casserole?
 - b. half the amount of casserole?
 - c. five times the amount of casserole?
 - d. one-fifth the amount of casserole?
- 3. What is the ratio of cups of pasta to ounces of tuna in one batch of casserole?
- 4. How many batches of casserole would you make if you used the following amounts of ingredients?
 - a. 9 cups of pasta and 18 ounces of tuna?
 - b. 36 ounces of tuna and 18 cups of pasta?
 - c. 1 cup of pasta and 2 ounces of tuna?

3 What Are Equivalent Ratios?

Student Task Statement

The ratios 5 : 3 and 10 : 6 are **equivalent ratios**.

- 1. Is the ratio 15 : 12 equivalent to these? Explain your reasoning.
- 2. Is the ratio 30:18 equivalent to these? Explain your reasoning.
- 3. Give two more examples of ratios that are equivalent to 5:3.
- 4. How do you know when ratios are equivalent and when they are *not* equivalent?
- 5. Write a definition of *equivalent ratios*.

Pause here so your teacher can review your work and assign you a ratio to use for your visual display.

- 6. Create a visual display that includes:
 - the title "Equivalent Ratios"
 - $^{\circ}\,$ your best definition of *equivalent ratios*
 - $^{\circ}\,$ the ratio your teacher assigned to you
 - $^{\circ}\,$ at least two examples of ratios that are equivalent to your assigned ratio
 - ° an explanation of how you know these examples are equivalent
 - ° at least one example of a ratio that is *not* equivalent to your assigned ratio
 - an explanation of how you know this example is *not* equivalent

Be prepared to share your display with the class.