Lesson 13 Practice Problems

1. Which expression is equivalent to $2 i(5+3 i)$?
A. $-6+10 i$
B. $6+10 i$
C. $-10+6 i$
D. $10+6 i$
2. Lin says, "When you add or multiply two complex numbers, you will always get an answer you can write in $a+b i$ form."

Noah says, "I don't think so. Here are some exceptions I found:"
$(7+2 i)+(3-2 i)=10$
$(2+2 i)(2+2 i)=8 i$
a. Check Noah's arithmetic. Is it correct?
b. Can Noah's answers be written in the form $a+b i$, where a and b are real numbers? Explain or show your reasoning.
3. Explain to someone who missed class how you would write $(3-5 i)(-2+4 i)$ in the form $a+b i$, where a and b are real numbers.
4. Which expression is equal to $729^{\frac{2}{3}}$?
A. 243
B. 486
C. 9^{2}
D. 27^{3}
(From Unit 3, Lesson 4.)
5. Find the solution(s) to each equation, or explain why there is no solution.
a. $2 x^{2}-\frac{2}{3}=5 \frac{1}{3}$
b. $(x+1)^{2}=81$
c. $3 x^{2}+14=12$
6. Plot each number in the complex plane.
a. $5 i$
b. $2+4 i$
c. -3
d. $1-3 i$
e. $-5-2 i$

(From Unit 3, Lesson 11.)
7. Select all the expressions that are equivalent to $(3 x+2)(x-4)$ for all real values of x.
A. $3 x^{2}-12$
B. $3 x^{2}-10 x-8$
C. $3\left(x^{2}+2 x-4\right)$
D. $3\left(x^{2}-3 x\right)-(x+8)$
E. $3 x(x-3)-2(5 x+4)$
F. $3 x(x-4)+2(x-4)$
(From Unit 2, Lesson 23.)

