Lesson 4: Coordinate Moves

Let's transform some figures and see what happens to the coordinates of points.

4.1: Translating Coordinates

Select all of the translations that take Triangle T to Triangle U. There may be more than one correct answer.

1. Translate $(-3,0)$ to $(1,2)$.
2. Translate $(2,1)$ to $(-2,-1)$.
3. Translate $(-4,-3)$ to $(0,-1)$.
4. Translate $(1,2)$ to $(2,1)$.

4.2: Reflecting Points on the Coordinate Plane

1. Here is a list of points

$$
A=(0.5,4) \quad B=(-4,5) \quad C=(7,-2) \quad D=(6,0) \quad E=(0,-3)
$$

On the coordinate plane:
a. Plot each point and label each with its coordinates.
b. Using the x-axis as the line of reflection, plot the image of each point.
c. Label the image of each point with its coordinates.
d. Include a label using a letter. For example, the image of point A should be labeled A^{\prime}.
2. If the point $(13,10)$ were reflected using the x-axis as the line of reflection, what would be the coordinates of the image? What about $(13,-20)$? $(13,570)$? Explain how you know.
3. The point R has coordinates (3,2).
a. Without graphing, predict the coordinates of the image of point R if point R were reflected using the y-axis as the line of reflection.
b. Check your answer by finding the image of R on the graph.

c. Label the image of point R as R^{\prime}.
d. What are the coordinates of R^{\prime} ?
4. Suppose you reflect a point using the y-axis as line of reflection. How would you describe its image?

4.3: Transformations of a Segment

Apply each of the following transformations to segment $A B$.

1. Rotate segment $A B 90$ degrees counterclockwise around center B. Label the image of A as C. What are the coordinates of C ?
2. Rotate segment $A B 90$ degrees counterclockwise around center A. Label the image of B as D. What are the coordinates of D ?
3. Rotate segment $A B 90$ degrees clockwise around (0,0). Label the image of A as E and the image of B as F. What are the coordinates of E and F ?
4. Compare the two 90 -degree counterclockwise rotations of segment $A B$. What is the same about the images of these rotations? What is different?

Are you ready for more?

Suppose $E F$ and $G H$ are line segments of the same length. Describe a sequence of transformations that moves $E F$ to $G H$.

Lesson 4 Summary

We can use coordinates to describe points and find patterns in the coordinates of transformed points.

We can describe a translation by expressing it as a sequence of horizontal and vertical translations. For example, segment $A B$ is translated right 3 and down 2.

Reflecting a point across an axis changes the sign of one coordinate. For example, reflecting the point A whose coordinates are $(2,-1)$ across the x-axis changes the sign of the y-coordinate, making its image the point A^{\prime} whose coordinates are (2,1). Reflecting the point A across the y-axis changes the sign of the x-coordinate, making the image the point $A^{\prime \prime}$ whose coordinates are $(-2,-1)$.

			y				

Reflections across other lines are more complex to describe.

We don't have the tools yet to describe rotations in terms of coordinates in general. Here is an example of a 90° rotation with center $(0,0)$ in a counterclockwise direction.

Point A has coordinates $(0,0)$. Segment $A B$ was rotated 90° counterclockwise around A. Point \boldsymbol{B} with coordinates $(2,3)$ rotates to point \boldsymbol{B}^{\prime} whose coordinates are $(-3,2)$.

