Lesson 9: Explain Equivalence

- Let's talk about how we know whether two fractions are equivalent.

Warm-up: Number Talk: Familiar Numbers

Find the value of each expression mentally.

- 10×6
- 10×12
- 10×24
- 5×24

9.1: Pointed Discussion

Andre, Lin, and Clare are representing $\frac{70}{100}$ on a number line.

- Andre said, "Oh, no! We'll need to partition the line into 100 equal parts and count 70 parts just to mark one point!"
- Lin said, "What if we mark $\frac{7}{10}$ instead? We could partition the line into just 10 parts and count 7 parts."
- Clare said, "What if we partition the line into 5 parts and mark $\frac{3}{5}$?"

Do you agree with any of them? Explain or show your reasoning.

9.2: How Do You Know?

Around the room you will find six posters, each showing either two or three fractions.

With your group, visit at least two posters: one with two fractions and one with three fractions.

For the set of 2 fractions:

- Explain or show how you know the fractions are equivalent.
- Write a new equivalent fraction on a sticky note and add it to the poster. Think of a fraction that hasn't already been written by someone else.

We visited poster \qquad which shows \qquad and \qquad .

New equivalent fraction: \qquad

For the set of 3 fractions:

- Identify 2 fractions that are equivalent. Explain your reasoning.

We visited poster \qquad which shows \qquad , \qquad and \qquad .

