

Lesson 17 Practice Problems

1. Here the graph of quadratic function f.

Andre uses the expression $(x - 5)^2 + 7$ to define *f*.

Noah uses the expression $(x + 5)^2 - 7$ to define *f*.

Do you agree with either of them? Explain your reasoning.

- 2. Here are the graphs of $y = x^2$, $y = x^2 5$, and $y = (x + 2)^2 8$.
 - a. How do the 3 graphs compare?

- b. Compare the graphs of $y = x^2$ and $y = x^2 5$. What role does the -5 play in the comparison?
- c. Compare the graphs of $y = x^2$ and $y = (x + 2)^2 8$. What role does the +2 play in the comparison?
- 3. Which equation represents the graph of $y = x^2 + 2x 3$ moved 3 units to the left?

A.
$$y = x^{2} + 2x - 6$$

B. $y = (x + 3)^{2} + 2x - 3$
C. $y = (x + 3)^{2} + 2(x + 3)$
D. $y = (x + 3)^{2} + 2(x + 3) - 3$

4. Select **all** the equations with a graph whose vertex has *both* a positive *x*- and a positive *y*-coordinate.

A.
$$y = x^{2}$$

B. $y = (x - 1)^{2}$
C. $y = (x - 3)^{2} + 2$
D. $y = 2(x - 4)^{2} - 5$
E. $y = 0.5(x + 2)^{2} + 6$
F. $y = -(x - 4)^{2} + 3$
G. $y = -2(x - 3)^{2} + 1$

- 5. The height in feet of a soccer ball is modeled by the equation $g(t) = 2 + 50t 16t^2$, where time *t* is measured in seconds after it was kicked.
 - a. How far above the ground was the ball when kicked?
 - b. What was the initial upward velocity of the ball?
 - c. Why is the coefficient of the squared term negative?

(From Unit 6, Lesson 14.)

- 6. a. What is the vertex of the graph of the function *f* defined by $f(x) = -(x 3)^2 + 6$?
 - b. Identify the *y*-intercept and one other point on of the graph of this function.

					VΛ	\						
		_		_				_				
		_		+	8	-						
					1							
		_		- '	+							
						- 1						. L
					\mathcal{O}						_	\rightarrow
-8	-6		4	-2	\mathcal{O}_{Λ}		2		1	-(5	-X
8	-6		4	-2	0 4		2		1	-(5	→ _X
-8	-6		4	-2	0 4 8		2		1	-(5	
8	-6		4	-2	0 4 8		2		4	-(5	→ _X

c. Sketch the graph of f.

(From Unit 6, Lesson 16.)

7. At 6:00 a.m., Lin began hiking. At noon, she had hiked 12 miles. At 4:00 p.m., Lin finished hiking with a total trip of 26 miles.

During which time interval was Lin hiking faster? Explain how you know.

(From Unit 4, Lesson 7.)

- 8. Kiran bought a smoothie every day for a week. Smoothies cost \$3 each. The amount of money he spends, in dollars, is a function of the number of days of buying smoothies.
 - a. Sketch a graph of this function. Be sure to label the axes.
 - b. Describe the domain and range of this function.

(From Unit 4, Lesson 11.)

9. A deposit of \$500 has been made in an interest-bearing account. No withdrawals or other deposits (aside from earned interest) are made for 5 years.

Write an expression to represent the account balance for each of the following situations.

- a. 6.5% annual interest calculated monthly
- b. 6.5% annual interest calculated every two months
- c. 6.5% annual interest calculated quarterly
- d. 6.5% annual interest calculated semi-annually

(From Unit 5, Lesson 18.)

- 10. *Technology required*. Function *h* is defined by h(x) = 5x + 7 and function *k* is defined by $k(x) = (1.005)^x$.
 - a. Complete the table with values of h(x) and k(x). When necessary, round to 2 decimal places.
 - b. Which function do you think *eventually* grows faster? Explain your reasoning.

x	h(x)	k(x)
1		
10		
50		
100		

c. Use graphing technology to verify your answer to the previous question.

(From Unit 5, Lesson 19.)