Lesson 1 Practice Problems

1. Find the values of x, y, and z.

2. Give an example from the image of each kind of segment.
a. a diameter
b. a chord that is not a diameter
c. a radius

3. Identify whether each statement must be true, could possibly be true, or definitely can't be true.
a. A diameter is a chord.
b. A radius is a chord.
c. A chord is a diameter.
d. A central angle measures 90°.
4. Write an equation of the altitude from vertex A.

(From Unit 6, Lesson 17.)
5. Triangle $A B C$ has vertices at $(5,0),(1,6)$, and $(9,3)$. What is the point of intersection of the triangle's medians?
A. The medians do not intersect in a single point.
B. $(3,3)$
C. $(5,3)$
D. $(3,4.5)$
(From Unit 6, Lesson 16.)
6. Consider the parallelogram with vertices at $(0,0),(8,0),(4,6)$, and $(12,6)$. Where do the diagonals of this parallelogram intersect?
7. Lines l and p are parallel. Select all true statements.

A. Triangle $A D B$ is congruent to triangle $C E F$.
B. The slope of line ℓ is equal to the slope of line p.
C. Triangle $A D B$ is similar to triangle $C E F$.
D. $\sin (A)=\sin (C)$
E. $\cos (B)=\sin (C)$
(From Unit 6, Lesson 10.)
8. Mai wrote a proof that triangle $A E D$ is congruent to $\angle A \cong \angle C, \overline{A E} \cong \overline{C E}$ triangle $C E B$. Mai's proof is incomplete. How can Mai fix her proof?

We know side $A E$ is congruent to side $C E$ and angle A is congruent to angle C. By the Angle-Side-Angle Triangle Congruence Theorem, triangle $A E D$ is congruent to triangle $C E B$.

(From Unit 2, Lesson 7.)

