

Lesson 5 Practice Problems

1. Select all parallelograms that have a correct height labeled for the given base.

- A. A
- B. B
- C. C
- D. D
- 2. The side labeled b has been chosen as the base for this parallelogram.

Draw a segment showing the height corresponding to that base.

3. Find the area of each parallelogram.

4. If the side that is 6 units long is the base of this parallelogram, what is its corresponding height?

- A. 6 units
- B. 4.8 units
- C. 4 units
- D. 5 units
- 5. Find the area of each parallelogram.

6. Do you agree with each of these statements? Explain your reasoning.
a. A parallelogram has six sides.
b. Opposite sides of a parallelogram are parallel.
c. A parallelogram can have one pair or two pairs of parallel sides.
d. All sides of a parallelogram have the same length.
e. All angles of a parallelogram have the same measure.
(From Unit 1, Lesson 4.)
7. A square with an area of 1 square meter is decomposed into 9 identical small squares. Each small square is decomposed into two identical triangles.
a. What is the area, in square meters, of 6 triangles? If you get stuck, consider drawing a diagram.
b. How many triangles are needed to compose a region that is $1\frac{1}{2}$ square meters? (From Unit 1, Lesson 2.)
(FIOHI OHIL 1, LESSOH Z.)