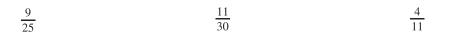
Lesson 5: Say It with Decimals

Let's use decimals to describe increases and decreases.

5.1: Notice and Wonder: Fractions to Decimals


A calculator gives the following decimal representations for some unit fractions:

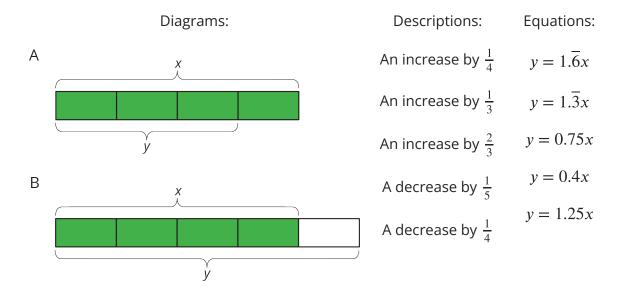
$\frac{1}{2} = 0.5$	$\frac{1}{7} = 0.142857143$
$\frac{1}{3} = 0.3333333$	$\frac{1}{8} = 0.125$
$\frac{1}{4} = 0.25$	$\frac{1}{9} = 0.11111111$
$\frac{1}{5} = 0.2$	$\frac{1}{10} = 0.1$
$\frac{1}{6} = 0.1666667$	$\frac{1}{11} = 0.0909091$

What do you notice? What do you wonder?

5.2: Repeating Decimals

1. Use **long division** to express each fraction as a decimal.

- 2. What is similar about your answers to the previous question? What is different?
- 3. Use the decimal representations to decide which of these fractions has the greatest value. Explain your reasoning.


Are you ready for more?

One common approximation for π is $\frac{22}{7}$. Express this fraction as a decimal. How does this approximation compare to 3.14?

5.3: More and Less with Decimals

1. Match each diagram with a description and an equation.

2. Draw a diagram for one of the unmatched equations.

5.4: Card Sort: More Representations

Your teacher will give you a set of cards that have proportional relationships represented 2 different ways: as descriptions and equations. Mix up the cards and place them all face-up.

Take turns with a partner to match a description with an equation.

- 1. For each match you find, explain to your partner how you know it's a match.
- 2. For each match your partner finds, listen carefully to their explanation, and if you disagree, explain your thinking.
- 3. When you have agreed on all of the matches, check your answers with the answer key. If there are any errors, discuss why and revise your matches.

Lesson 5 Summary

Long division gives us a way of finding decimal representations for fractions.

For example, to find a decimal	1.125
representation for $\frac{9}{8}$, we can divide 9 by 8.	8)9.000
δ	8
	10
	8
	$\overline{20}$
	<u>16</u>
	40
	<u>40</u>
	0

So $\frac{9}{8} = 1.125$.

Sometimes it is easier to work with the decimal representation of a number, and sometimes it is easier to work with its fraction representation. It is important to be able to work with both. For example, consider the following pair of problems:

- Priya earned x dollars doing chores, and Kiran earned $\frac{6}{5}$ as much as Priya. How much did Kiran earn?
- Priya earned *x* dollars doing chores, and Kiran earned 1.2 times as much as Priya. How much did Kiran earn?

Since $\frac{6}{5} = 1.2$, these are both exactly the same problem, and the answer is $\frac{6}{5}x$ or 1.2x. When we work with percentages in later lessons, the decimal representation will come in especially handy.