Lesson 7: Construction Techniques 5: Squares

- Let's use straightedge and compass moves to construct squares.

7.1: Which One Doesn't Belong: Polygons

Which one doesn't belong?
A

B

C

D

7.2: It's Cool to Be Square

Use straightedge and compass moves to construct a square with segment $A B$ as one of the sides.

7.3: Trying to Circle a Square

1. Here is square $A B C D$ with diagonal $B D$ drawn:
a. Construct a circle centered at A with radius $A D$.
b. Construct a circle centered at C with radius $C D$.
c. Draw the diagonal $A C$ and write a conjecture about the relationship between the diagonals $B D$ and $A C$.
d. Label the intersection of the diagonals as point E and construct a circle centered at \boldsymbol{E} with radius $\boldsymbol{E} B$. How are the diagonals related to this circle?

2. Use your conjecture and straightedge and compass moves to construct a square inscribed in a circle.

Are you ready for more?

Use straightedge and compass moves to construct a square that fits perfectly outside the circle, so that the circle is inscribed in the square. How do the areas of these 2 squares compare?

Lesson 7 Summary

We can use what we know about perpendicular lines and congruent segments to construct many different objects. A square is made up of 4 congruent segments that create 4 right angles. A square is an example of a regular polygon since it is equilateral (all the sides are congruent) and equiangular (all the angles are congruent). Here are some regular polygons inscribed inside of circles:

