Unit 3 Lesson 8: Cubes and Cube Roots

1 Put Your Arm(s) Up (Warm up)

Student Task Statement

How are these graphs the same? How are they different?

2 Finding Cube Roots with a Graph

Student Task Statement

How many solutions are there to each of the following equations? Estimate the solution(s) from the graph of $y = x^3$. Check your estimate by substituting it back into the equation.

1.
$$x^3 = 8$$

2.
$$x^3 = 2$$

3.
$$x^3 = 0$$

4.
$$x^3 = -8$$

5.
$$x^3 = -2$$

3 Cube Root Equations (Optional)

Student Task Statement

- 1. Use the graph of $y = \sqrt[3]{x}$ to estimate the solution(s) to $\sqrt[3]{x} = -4$.
- 2. Use the meaning of cube roots to find an exact solution to the equation $\sqrt[3]{x} = -4$. How close was your estimate?
- 3. Find the solution of the equation $\sqrt[3]{x} = 3.5$ using the meaning of cube roots. Use the graph to check that your solution is reasonable.

4 Solve These Equations With Cube Roots in Them

Student Task Statement

Here are a lot of equations:

• $\sqrt[3]{t+4} = 3$	• $\sqrt[3]{p+4} - 2 = 1$
• $-10 = -\sqrt[3]{a}$	• $6 - \sqrt[3]{b} = 0$
$\bullet \sqrt[3]{3-w} - 4 = 0$	$\bullet \sqrt[3]{2n} + 3 = -5$
• $\sqrt[3]{z} + 9 = 0$	• $4 + \sqrt[3]{-m} + 4 = 6$
• $\sqrt[3]{r^3 - 19} = 2$	• $-\sqrt[3]{c} = 5$
• $5 - \sqrt[3]{k+1} = -1$	$\bullet \sqrt[3]{s-7} + 3 = 0$

- 1. Without solving, identify 3 equations that you think would be the least difficult to solve and 3 equations that you think would be the most difficult to solve. Be prepared to explain your reasoning.
- 2. Choose 4 equations and solve them. At least one should be from your "least difficult" list and at least one should be from your "most difficult" list.