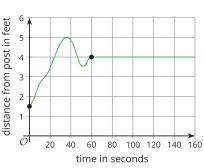
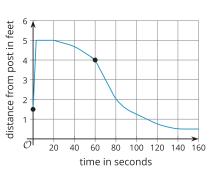

Lesson 2: Function Notation

• Let's learn about a handy way to refer to and talk about a function.


2.1: Back to the Post!

Here are the graphs of some situations you saw before. Each graph represents the distance of a dog from a post as a function of time since the dog owner left to purchase something from a store. Distance is measured in feet and time is measured in seconds.


Day 1

Day 2

Day 3

- 1. Use the given graphs to answer these questions about each of the three days:
 - a. How far away was the dog from the post 60 seconds after the owner left?

Day 1:

Day 2:

Day 3:

b. How far away was the dog from the post when the owner left?

Day 1:

Day 2:

Day 3:

c. The owner returned 160 seconds after he left. How far away was the dog from the post at that time?

Day 1:

Day 2:

Day 3:

d. How many seconds passed before the dog reached the farthest point it could reach from the post?

Day 1:

Day 2:

Day 3:

- 2. Consider the statement, "The dog was 2 feet away from the post after 80 seconds." Do you agree with the statement?
- 3. What was the distance of the dog from the post 100 seconds after the owner left?

2.2: A Handy Notation

Let's name the functions that relate the dog's distance from the post and the time since its owner left: function f for Day 1, function g for Day 2, function h for Day 3. The input of each function is time in seconds, t.

1. Use function notation to complete the table.

	day 1	day 2	day 3
a. distance from post 60 seconds after the owner left			
b. distance from post when the owner left			
c. distance from post 150 seconds after the owner left			

- 2. Describe what each expression represents in this context:
 - a. f(15)
 - b. g(48)
 - c. h(t)
- 3. The equation g(120) = 4 can be interpreted to mean: "On Day 2, 120 seconds after the dog owner left, the dog was 4 feet from the post."

What does each equation mean in this situation?

a.
$$h(40) = 4.6$$

b.
$$f(t) = 5$$

c.
$$g(t) = d$$

2.3: Birthdays

Rule B takes a person's name as its input, and gives their birthday as the output.

Rule P takes a date as its input and gives a person with that birthday as the output.

input	output	
Abraham Lincoln	February 12	

input	output	
August 26	Katherine Johnson	

- 1. Complete each table with three more examples of input-output pairs.
- 2. If you use your name as the input to B, how many outputs are possible? Explain how you know.
- 3. If you use your birthday as the input to P, how many outputs are possible? Explain how you know.
- 4. Only one of the two relationships is a function. The other is not a function. Which one is which? Explain how you know.
- 5. For the relationship that is a function, write two input-output pairs from the table using function notation.

Are you ready for more?

1. Write a rule that describes these input-output pairs:

$$F(ONE) = 3$$

$$F(TWO) = 3$$

$$F(\text{THREE}) = 5$$

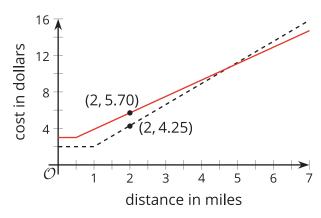
$$F(FOUR) = 4$$

2. Here are some input-output pairs with the same inputs but different outputs:

$$v(ONE) = 2$$

$$v(TWO) = 1$$

$$v(\text{THREE}) = 2$$

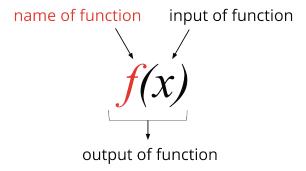

$$v(FOUR) = 2$$

What rule could define function v?

Lesson 2 Summary

Here are graphs of two functions, each representing the cost of riding in a taxi from two companies—Friendly Rides and Great Cabs.

For each taxi, the cost of a ride is a function of the distance traveled. The input is distance in miles, and the output is cost in dollars.


- The point (2, 5.70) on one graph tells us the cost of riding a Friendly Rides taxi for 2 miles.
- The point (2, 4.25) on the other graph tells us the cost of riding a Great Cabs taxi for 2 miles.

We can convey the same information much more efficiently by naming each function and using **function notation** to specify the input and the output.

- ullet Let's name the function for Friendly Rides function f.
- ullet Let's name the function for Great Cabs function g.
- To refer to the cost of riding each taxi for 2 miles, we can write: f(2) and g(2).
- To say that a 2-mile trip with Friendly Rides will cost \$5.70, we can write f(2) = 5.70.
- To say that a 2-mile trip with Great Cabs will cost \$4.25, we can write g(2) = 4.25.

In general, function notation has this form:

It is read "f of x" and can be interpreted to mean: f(x) is the output of a function f when x is the input.

The function notation is a concise way to refer to a function and describe its input and output, which can be very useful. Throughout this unit and the course, we will use function notation to talk about functions.