Lesson 11 Practice Problems

1. A line ℓ is defined by the equation $f(x)=2 x-3$.
a. Line m is the same as line l, but shifted 1 unit right. What is an equation for a function g that defines the line m ?
b. Line n is the same as line m, but shifted 2 units up. What is an equation for a function h that defines the line n ?
c. What is the relationship between f and h ?
(From Unit 5, Lesson 2.)
2. The functions g and f are related by the equation $g(x)=f(-x)+3$. Which sequence of transformations will take the graph of f to the graph of g ?
(From Unit 5, Lesson 4.)
3. The function f is linear. Can f be an odd function? Explain how you know
4. Technology required. The function f is given by $f(x)=x^{3}+1$. Kiran says that f is odd because $(-x)^{3}=-x^{3}$.
a. Do you agree with Kiran? Explain your reasoning.
b. Graph f, and use the graph to decide whether or not f is an odd function.

(From Unit 5, Lesson 6.)

5. Here are graphs of three functions f, g, and h given by $f(x)=(x-1)^{2}$, $g(x)=2(x-1)^{2}$ and $h(x)=3(x-1)^{2}$.

Identify which function matches each graph. Explain how you know.
(From Unit 5, Lesson 8.)
6. Technology required. Describe how to transform the graph of $f(x)=x^{2}$ into the graph of $g(x)=4(3 x-1)^{2}+5$. Check your response by graphing f and g.
(From Unit 5, Lesson 9.)
7. Let p be the price of a T-shirt, in dollars. A company expects to sell $f(p) \mathrm{T}$-shirts a day where $f(p)=50-4 p$. Write a function r giving the total revenue received in a day.
(From Unit 5, Lesson 10.)
8. A population of 80 single-celled organisms is tripling every hour. The population as a function of hours since it is measured, h, can be represented by $g(h)=80 \cdot 3^{h}$.

Which equation represents the population 10 minutes after it is measured?
A. $g(10)=80 \cdot 3^{10}$
B. $g(0.1)=80 \cdot 3^{0.1}$
C. $g\left(\frac{1}{6}\right)=80 \cdot 3^{\frac{1}{6}}$
D. $g(6)=80 \cdot 3^{6}$

