

Lesson 11 Practice Problems

1. A line ℓ is defined by the equation f(x) = 2x - 3.

- a. Line *m* is the same as line *l*, but shifted 1 unit right. What is an equation for a function *g* that defines the line *m*?
- b. Line *n* is the same as line *m*, but shifted 2 units up. What is an equation for a function *h* that defines the line *n*?
- c. What is the relationship between *f* and *h*?

(From Unit 5, Lesson 2.)

2. The functions g and f are related by the equation g(x) = f(-x) + 3. Which sequence of transformations will take the graph of f to the graph of g?

(From Unit 5, Lesson 4.)

3. The function f is linear. Can f be an odd function? Explain how you know

(From Unit 5, Lesson 5.)

- 4. *Technology required*. The function f is given by $f(x) = x^3 + 1$. Kiran says that f is odd because $(-x)^3 = -x^3$.
 - a. Do you agree with Kiran? Explain your reasoning.
 - b. Graph f, and use the graph to decide whether or not f is an odd function.

(From Unit 5, Lesson 6.)

5. Here are graphs of three functions f, g, and h given by $f(x) = (x - 1)^2$, $g(x) = 2(x - 1)^2$ and $h(x) = 3(x - 1)^2$.

Identify which function matches each graph. Explain how you know.

(From Unit 5, Lesson 8.)

6. *Technology required*. Describe how to transform the graph of $f(x) = x^2$ into the graph of $g(x) = 4(3x - 1)^2 + 5$. Check your response by graphing f and g.

(From Unit 5, Lesson 9.)

7. Let *p* be the price of a T-shirt, in dollars. A company expects to sell f(p) T-shirts a day where f(p) = 50 - 4p. Write a function *r* giving the total revenue received in a day.

(From Unit 5, Lesson 10.)

8. A population of 80 single-celled organisms is tripling every hour. The population as a function of hours since it is measured, *h*, can be represented by $g(h) = 80 \cdot 3^h$.

Which equation represents the population 10 minutes after it is measured?

A.
$$g(10) = 80 \cdot 3^{10}$$

B. $g(0.1) = 80 \cdot 3^{0.1}$
C. $g(\frac{1}{6}) = 80 \cdot 3^{\frac{1}{6}}$
D. $g(6) = 80 \cdot 3^{6}$

(From Unit 4, Lesson 3.)