Unit 3 Lesson 3: Exponents That Are Unit Fractions

 1 Sometimes It's Squared and Sometimes It's Cubed (Warm up)
Student Task Statement

Find a solution to each equation.

1. $x^{2}=25$
2. $z^{2}=7$
3. $y^{3}=8$
4. $w^{3}=19$

2 To the...Half?

Student Task Statement

1. Clare said, "I know that $9^{2}=9 \cdot 9,9^{1}=9$, and $9^{0}=1$. I wonder what $9^{\frac{1}{2}}$ means?" First, she graphed $y=9^{x}$ for some whole number values of x, and estimated $9^{\frac{1}{2}}$ from the graph.
a. Graph the function yourself. What estimate do you get for $9^{\frac{1}{2}}$?

b. Using the properties of exponents, Clare evaluated $9^{\frac{1}{2}} \cdot 9^{\frac{1}{2}}$. What did she get?
c. For that to be true, what must the value of $9^{\frac{1}{2}}$ be?
2. Diego saw Clare's work and said, "Now I'm wondering about $3^{\frac{1}{2}}$." First he graphed $y=3^{x}$ for some whole number values of x, and estimated $3^{\frac{1}{2}}$ from the graph.
a. Graph the function yourself. What estimate do you get for $3^{\frac{1}{2}}$?

b. Next he used exponent rules to find the value of $\left(3^{\frac{1}{2}}\right)^{2}$. What did he find?
c. Then he said, "That looks like a root!" What do you think he means?

3 Fraction of What, Exactly?

Student Task Statement

Use the exponent rules and your understanding of roots to find the exact value of:

1. $25^{\frac{1}{2}}$
2. $15^{\frac{1}{2}}$
3. $8^{\frac{1}{3}}$
4. $2^{\frac{1}{3}}$

4 Exponents and Radicals

Student Task Statement

Match each exponential expression to an equivalent expression.

- 7^{3}
- $\frac{1}{49}$
- 7^{2}
- $\frac{1}{343}$
- 7^{1}
- $\sqrt{7}$
- 7^{0}
- 7^{-1}
- $\frac{1}{\sqrt[3]{7}}$
- 7^{-2}
- $\sqrt[3]{7}$
- 7^{-3}
- 49
- $7^{\frac{1}{2}}$
- $7^{-\frac{1}{2}}$
- $\frac{1}{\sqrt{7}}$
- $7^{\frac{1}{3}}$
- $7^{-\frac{1}{3}}$
- 343
- 7
- $\frac{1}{7}$
- 1

