## Lesson 8 Practice Problems

1. In each pair of graphs shown here, the values of function $g$ are the values of function $f$ multiplied by a scale factor. Express $g$ in terms of $f$ using function notation.




2. Here is the graph of $y=f(x)$ for a cubic function $f$.

a. Will scaling the outputs of $f$ change the $x$-intercepts of the graph? Explain how you know.
b. Will scaling the outputs of $f$ change the $y$-intercept of the graph? Explain how you know.
3. The function $f$ is given by $f(x)=2^{x}$, while the function $g$ is given by $g(x)=4 \cdot 2^{x}$. Kiran says that the graph of $g$ is a vertical scaling of the graph of $f$. Mai says that the graph of $g$ is a horizontal shift of the graph of $f$. Do you agree with either of them? Explain your reasoning.
4. The dashed function is the graph of $f$ and the solid function is the graph of $g$. Express $g$ in terms of $f$.

(From Unit 5, Lesson 4.)
5. The table shows some values for an odd function $f$.

| $x$ | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | -3 |  | 5 |  | 0 | 19 |  | -11 |  |

Complete the table.
(From Unit 5, Lesson 5.)
6. Here is a graph of $f(x)=x^{3}$ and a graph of $g$, which is a transformation of $f$. Write an equation for the function $g$.

(From Unit 5, Lesson 7.)

