Unit 3 Lesson 4: Positive Rational Exponents

1 Math Talk: Regrouping Fractions (Warm up)

Student Task Statement

Find the value of each expression mentally.

- $\frac{1}{2} \cdot 5 \cdot 4$
- $\frac{5}{2} \cdot 4$
- $\frac{2}{3} \cdot 7 \cdot \frac{3}{2}$
- $7 \cdot \frac{5}{3} \cdot \frac{3}{7}$

2 You Can Use Any Fraction As an Exponent

Student Task Statement

1. Use exponent rules to explain why these expressions are equal to each other:

$$\left(5^{\frac{1}{3}}\right)^2 \quad \left(5^2\right)^{\frac{1}{3}}$$

- 2. Write $5^{\frac{2}{3}}$ using radicals.
- 3. Write $5^{\frac{4}{3}}$ using radicals. Show your reasoning using exponent rules.

3 Fractional Powers Are Just Numbers

Student Task Statement

1. Complete the table as much as you can without using a calculator. (You should be able to fill in three spaces.)

x	0	$\frac{1}{3}$	$\frac{2}{3}$	1	<u>4</u> 3	<u>5</u> 3	2
2 ^x (using exponents)	2^{0}	$2^{\frac{1}{3}}$	$2^{\frac{2}{3}}$	21	$2^{\frac{4}{3}}$	$2^{\frac{5}{3}}$	2^2
2 ^x (decimal approximation)							

a. Plot the points that you filled in.

- b. Connect the points as smoothly as you can.
- c. Use this graph of $y=2^x$ to estimate the value of the other powers in the table, and write your estimates in the table.
- 2. Let's investigate $2^{\frac{1}{3}}$:
 - a. Write $2^{\frac{1}{3}}$ using radical notation.
 - b. What is $\left(2^{\frac{1}{3}}\right)^3$?
 - c. Raise your estimate from the table of $2^{\frac{1}{3}}$ to the third power. What should it be? How close did you get?
- 3. Let's investigate $2^{\frac{2}{3}}$:
 - a. Write $2^{\frac{2}{3}}$ using radical notation.

- b. What is the value of $\left(2^{\frac{2}{3}}\right)^3$?
- c. Raise your estimate from the table of $2^{\frac{2}{3}}$ to the third power. What should it be? How close did you get?