Unit 3 Lesson 5: Negative Rational Exponents
1 Math Talk: Don't Be Negative (Warm up)
Student Task Statement
Evaluate mentally.
9^{2} 9^{-2} $9^{\frac{1}{2}}$
$9^{-\frac{1}{2}}$

2 Negative Fractional Powers Are Just Numbers

Student Task Statement

1. Complete the table as much as you can without using a calculator. (You should be able to fill in three spaces.)

x	-2	$-\frac{5}{3}$	$-\frac{4}{3}$	-1	$-\frac{2}{3}$	$-\frac{1}{3}$	0
2^{x} (using exponents)	2^{-2}	$2^{-\frac{5}{3}}$	$2^{-\frac{4}{3}}$	2^{-1}	$2^{-\frac{2}{3}}$	$2^{-\frac{1}{3}}$	2^{0}
2^{x} (decimal approximation)							

a. Plot these powers of 2 in the coordinate plane.
b. Connect the points as smoothly as you can.
c. Use your graph of $y=2^{x}$ to estimate the value of the other powers in the table, and write your estimates in the table.

2. Let's investigate $2^{-\frac{1}{3}}$.
a. Write $2^{-\frac{1}{3}}$ using radical notation.
b. What is the value of $\left(2^{-\frac{1}{3}}\right)^{3}$?
c. Raise your estimate of $2^{-\frac{1}{3}}$ to the third power. What should it be? How close did you get?
3. Let's investigate $2^{-\frac{2}{3}}$.
a. Write $2^{-\frac{2}{3}}$ using radical notation.
b. What is $\left(2^{-\frac{2}{3}}\right)^{3}$?
c. Raise your estimate of $2^{-\frac{2}{3}}$ to the third power. What should it be? How close did you get?

3 Any Fraction Can Be an Exponent

Student Task Statement

1. For each set of 3 numbers, cross out the expression that is not equal to the other two expressions.
a. $8^{\frac{4}{5}}, \sqrt[4]{8}, \sqrt[5]{8}^{4}$
b. $8^{-\frac{4}{5}}, \frac{1}{\sqrt[5]{8^{4}}},-\frac{1}{\sqrt[5]{8^{4}}}$
c. $\sqrt{4^{3}}, 4^{\frac{3}{2}}, 4^{\frac{2}{3}}$
d. $\frac{1}{\sqrt{4^{3}}},-4^{\frac{3}{2}}, 4^{-\frac{3}{2}}$
2. For each expression, write an equivalent expression using radicals.
a. $17^{\frac{3}{2}}$
b. $31^{-\frac{3}{2}}$
3. For each expression, write an equivalent expression using only exponents.
a. $(\sqrt{3})^{4}$
b. $\frac{1}{(\sqrt[3]{5})^{6}}$

4 Make These Exponents Less Complicated (Optional)

Student Task Statement

Match expressions into groups according to whether they are equal. Be prepared to explain your reasoning.
$(\sqrt{3})^{4}$
$\sqrt{3^{2}}$
$\left(3^{\frac{1}{2}}\right)^{4}$
$(\sqrt{3})^{2} \cdot(\sqrt{3})^{2}$
$\left(3^{2}\right)^{\frac{1}{2}}$
3^{2}
$3^{\frac{4}{2}}$
$\left(3^{\frac{1}{2}}\right)^{2}$

