Unit 3 Lesson 5: Negative Rational Exponents

1 Math Talk: Don't Be Negative (Warm up)

Student Task Statement

Evaluate mentally.

 9^2 9^{-2} $9^{\frac{1}{2}}$ $9^{-\frac{1}{2}}$

2 Negative Fractional Powers Are Just Numbers

Student Task Statement

1. Complete the table as much as you can without using a calculator. (You should be able to fill in three spaces.)

x	-2	$-\frac{5}{3}$	$-\frac{4}{3}$	-1	$-\frac{2}{3}$	$-\frac{1}{3}$	0
2^x (using exponents)	2-2	$2^{-\frac{5}{3}}$	$2^{-\frac{4}{3}}$	2-1	$2^{-\frac{2}{3}}$	$2^{-\frac{1}{3}}$	2^{0}
2^x (decimal approximation)							

- a. Plot these powers of 2 in the coordinate plane.
- b. Connect the points as smoothly as you can.
- c. Use your graph of $y = 2^x$ to estimate the value of the other powers in the table, and write your estimates in the table.

2. Let's investigate $2^{\frac{1}{3}}$.

a. Write $2^{\frac{1}{3}}$ using radical notation.

b. What is the value of $\left(2^{-\frac{1}{3}}\right)^3$?

c. Raise your estimate of $2^{-\frac{1}{3}}$ to the third power. What should it be? How close did you get? 3. Let's investigate $2^{-\frac{2}{3}}$.

a. Write $2^{\frac{2}{3}}$ using radical notation.

b. What is
$$\left(2^{-\frac{2}{3}}\right)^3$$
?

c. Raise your estimate of $2^{-\frac{2}{3}}$ to the third power. What should it be? How close did you get?

3 Any Fraction Can Be an Exponent

Student Task Statement

1. For each set of 3 numbers, cross out the expression that is not equal to the other two expressions.

a.
$$8^{\frac{4}{5}}$$
, $\sqrt[4]{8^5}$, $\sqrt[5]{8^4}$
b. $8^{-\frac{4}{5}}$, $\frac{1}{\sqrt[5]{8^4}}$, $-\frac{1}{\sqrt[5]{8^4}}$
c. $\sqrt{4^3}$, $4^{\frac{3}{2}}$, $4^{\frac{2}{3}}$
d. $\frac{1}{\sqrt{4^3}}$, $-4^{\frac{3}{2}}$, $4^{-\frac{3}{2}}$

2. For each expression, write an equivalent expression using radicals.

a.
$$17^{\frac{3}{2}}$$

- b. $31^{-\frac{3}{2}}$
- 3. For each expression, write an equivalent expression using only exponents.

a.
$$\left(\sqrt{3}\right)^4$$

b. $\frac{1}{\left(\sqrt[3]{5}\right)^6}$

4 Make These Exponents Less Complicated (Optional)

Student Task Statement

Match expressions into groups according to whether they are equal. Be prepared to explain your reasoning.

