

Lesson 5: Compare and Order Decimals and Fractions

• Let's put fractions and decimals in order.

Warm-up: Number Talk: Sums of Fractions

Find the value of each expression mentally.

•
$$\frac{5}{10} + \frac{50}{100}$$

•
$$\frac{5}{10} + \frac{55}{100}$$

•
$$\frac{6}{10} + \frac{50}{100}$$

•
$$\frac{6}{10} + \frac{65}{100}$$

5.1: Order Once, Order Twice

Your teacher will give you a set of cards with fractions and decimals.

- 1. Work with your group to order the numbers from least to greatest. Record your ordered numbers.
- 2. Find a group whose cards are different than yours. Combine your cards with theirs. Order the combined set from least to greatest. Record your sorted numbers.
- 3. Use the numbers from your sorted set and <, >, or = symbols to create true comparison statements:

- b.____>____
- c. _____ < _____
- d.____>

5.2: Long Jumps

American athlete Carl Lewis won 10 Olympic medals and 10 World Championships in track and field—in 100-meter dash, 200-meter dash, and long jump.

year	distance (meters)
1979	8.13
1980	8.35
1982	8.7
1983	8.79
1984	8.24
1987	8.6
1991	8.87

Here are some of his long-jump records from his career:

1. On this list, which distance is his shortest jump? Which is his best (longest) jump?

2. Here are the top distances (in meters) of three other American long jumpers:

- Bob Beamon: $8\frac{9}{10}$
- ° Jarrion Lawson: $8\frac{58}{100}$
- Mike Powell: $8\frac{95}{100}$

Compare their records to Carl Lewis's best jump. Order the distances from greatest to least.

Section Summary

Section Summary

In this section, we learned to express tenths and hundredths as **decimals**, locate them on a number line, and compare them.

We learned that $\frac{1}{10}$ written as a decimal is 0.1, and that this number is also read "1 tenth." $\frac{1}{100}$ written as a decimal is 0.01 and is read "1 hundredth."

The table shows some more examples of tenths and hundredths in their decimal notation.

- Because $\frac{5}{10}$ and $\frac{50}{100}$ are equivalent, the decimals 0.5 and 0.50 are also equivalent.
- Likewise, $\frac{17}{10}$ and $\frac{170}{100}$ are equivalent, so 1.7 and 1.70 are also equivalent.

fraction	decimal
$\frac{4}{100}$	0.04
$\frac{23}{100}$	0.23
$\frac{5}{10}$	0.5
$\frac{50}{100}$	0.50
$\frac{17}{10}$	1.7
$\frac{170}{100}$	1.70

Just like fractions, decimals can be located on a number line. Doing so can help us compare them.

For instance, 0.24 is equivalent to $\frac{24}{100}$, which is between $\frac{20}{100}$ and $\frac{30}{100}$ (or between $\frac{2}{10}$ and $\frac{3}{10}$) on the number line. We can see that 0.24 is greater than 0.08 and less than 0.61.