Unit 3 Lesson 16: Solving Quadratics

1 Find the Perfect Squares (Warm up)

Student Task Statement

The expression $x^{2}+8 x+16$ is equivalent to $(x+4)^{2}$. Which expressions are equivalent to $(x+n)^{2}$ for some number n ?

$$
\begin{aligned}
& \text { 1. } x^{2}+10 x+25 \\
& \text { 2. } x^{2}+10 x+29 \\
& \text { 3. } x^{2}-6 x+8 \\
& \text { 4. } x^{2}-6 x+9
\end{aligned}
$$

2 Different Ways to Solve It (Optional)

Student Task Statement

Elena and Han solved the equation $x^{2}-6 x+7=0$ in different ways.
Elena said, "First I added 2 to each side:

$$
x^{2}-6 x+7+2=2
$$

So that tells me:

$$
(x-3)^{2}=2
$$

I can find the square roots of both sides:

$$
x-3= \pm \sqrt{2}
$$

Which is the same as:

$$
x=3 \pm \sqrt{2}
$$

So the two solutions are $x=3+\sqrt{2}$ and $x=3-\sqrt{2}$."

Han said, "I used the quadratic formula:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}
$$

Since $x^{2}-6 x+7=0$, that means $a=1, b=-6$, and $c=7$. I know:

$$
x=\frac{6 \pm \sqrt{36-4 \cdot 1 \cdot 7}}{2 \cdot 1}
$$

or

$$
x=\frac{6 \pm \sqrt{8}}{2}
$$

So:

$$
x=3 \pm \frac{\sqrt{8}}{2}
$$

I think the solutions are $x=3+\frac{\sqrt{8}}{2}$ and $x=3-\frac{\sqrt{8}}{2}$."
Do you agree with either of them? Explain your reasoning.

3 Solve These Ones (Optional)

Student Task Statement

Solve each quadratic equation with the method of your choice. Be prepared to compare your approach with a partner's.

1. $x^{2}=100$
2. $x^{2}=38$
3. $x^{2}-10 x+25=0$
4. $x^{2}+14 x+40=0$
5. $x^{2}+14 x+39=0$
6. $3 x^{2}-5 x-11=0$
