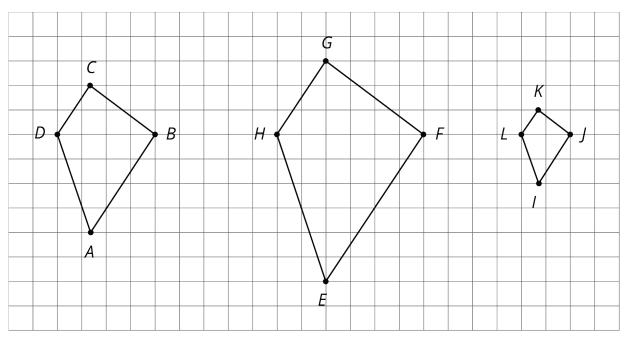

Lesson 4: Scaled Relationships

Let's find relationships between scaled copies.

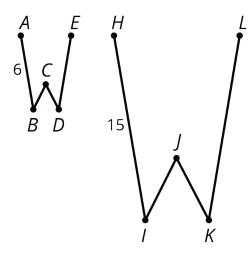
4.1: Three Quadrilaterals (Part 1)


Each of these polygons is a scaled copy of the others.

- 1. Name two pairs of corresponding angles. What can you say about the sizes of these angles?
- 2. Check your prediction by measuring at least one pair of corresponding angles using a protractor. Record your measurements to the nearest 5° .

4.2: Three Quadrilaterals (Part 2)

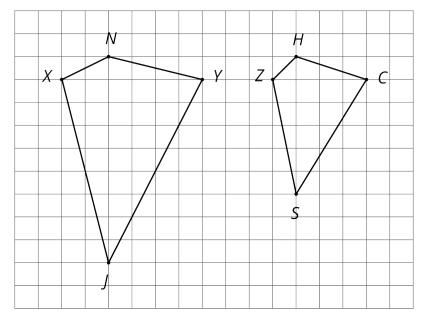
Each of these polygons is a scaled copy of the others. You already checked their corresponding angles.


1. The side lengths of the polygons are hard to tell from the grid, but there are other *corresponding distances* that are easier to compare. Identify the distances in the other two polygons that correspond to *DB* and *AC*, and record them in the table.

quadrilateral	distance that corresponds to <i>DB</i>	distance that corresponds to <i>AC</i>
ABCD	DB = 4	<i>AC</i> = 6
EFGH		
IJKL		

2. Look at the values in the table. What do you notice?

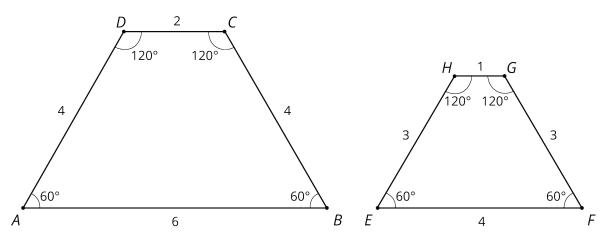
Pause here so your teacher can review your work.


3. The larger figure is a scaled copy of the smaller figure.

- a. If AE = 4, how long is the corresponding distance in the second figure? Explain or show your reasoning.
- b. If IK = 5, how long is the corresponding distance in the first figure? Explain or show your reasoning.

4.3: Scaled or Not Scaled?

Here are two quadrilaterals.

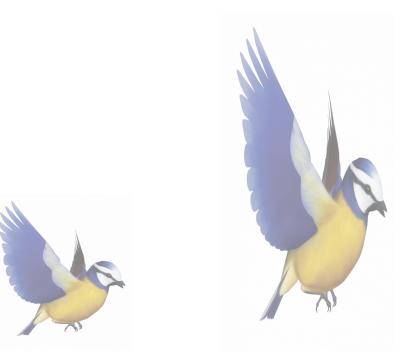

- 1. Mai says that Polygon ZSCH is a scaled copy of Polygon XJYN, but Noah disagrees. Do you agree with either of them? Explain or show your reasoning.
- 2. Record the corresponding distances in the table. What do you notice?

quadrilateral	horizontal distance	vertical distance
XJYN	XY =	JN =
ZSCH	ZC =	SH =

3. Measure at least three pairs of corresponding angles in XJYN and ZSCH using a protractor. Record your measurements to the nearest 5°. What do you notice?

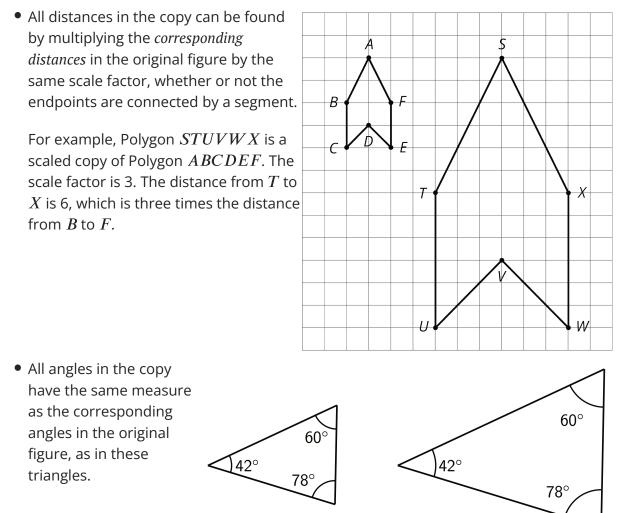
- 4. Do these results change your answer to the first question? Explain.
- 5. Here are two more quadrilaterals.

Kiran says that Polygon EFGH is a scaled copy of ABCD, but Lin disagrees. Do you agree with either of them? Explain or show your reasoning.

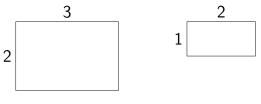

Are you ready for more?

All side lengths of quadrilateral MNOP are 2, and all side lengths of quadrilateral QRST are 3. Does MNOP have to be a scaled copy of QRST? Explain your reasoning.

4.4: Comparing Pictures of Birds


Here are two pictures of a bird. Find evidence that one picture is not a scaled copy of the other. Be prepared to explain your reasoning.

Lesson 4 Summary


When a figure is a scaled copy of another figure, we know that:

These observations can help explain why one figure is *not* a scaled copy of another.

For example, even though their corresponding angles have the same measure, the second rectangle is not a scaled copy of the first rectangle, because different pairs of corresponding lengths have different scale factors, $2 \cdot \frac{1}{2} = 1$ but $3 \cdot \frac{2}{3} = 2$.

