Unit 1 Lesson 5: Sequences are Functions

1 Bowling for Triangles (Part 1) (Warm up)

Student Task Statement

Describe how to produce one step of the pattern from the previous step.

Step 1	Step 2	Step 3	Step 4
\bullet	\bullet	\bullet	\bullet
	$\bullet \bullet$	$\bullet \bullet$	$\bullet \bullet$
		$\bullet \bullet$	$\bullet \bullet \bullet$

2 Bowling for Triangles (Part 2)

Student Task Statement

Here is a visual pattern of dots. The number of dots $D(n)$ is a function of the step number n.

1. What values make sense for n in this situation? What values don't make sense for n ?
2. Complete the table for Steps 1 to 5.

n	$D(n)$
1	1
2	$D(1)+2=3$
3	$D(2)+3=6$
4	
5	

3. Following the pattern in the table, write an equation for $D(n)$ in terms of the previous step. Be prepared to explain your reasoning.

3 Let's Define Some Sequences

Student Task Statement

Use the first 5 terms of each sequence to state if the sequence is arithmetic, geometric, or neither. Next, define the sequence recursively using function notation.

1. $A: 30,40,50,60,70, \ldots$
2. $B: 80,40,20,10,5,2.5, \ldots$
3. $C: 1,2,4,8,16,32, \ldots$
4. $D: 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
5. $E: 20,13,6,-1,-8, \ldots$
6. $F: 1,3,7,15,31, \ldots$
