Lesson 11 Practice Problems

1. Segment $A^{\prime} B^{\prime}$ is parallel to segment $A B$.
a. What is the length of segment $A B$?
b. What is the length of segment $\boldsymbol{B}^{\prime} \boldsymbol{B}$?

2. Explain how you know that segment $D E$ is not parallel to segment $B C$.

3. In right triangle $A B C, A C=4$ and $B C=5$. A new triangle $D E C$ is formed by connecting the midpoints of $A C$ and $B C$.

a. What is the area of triangle $A B C$?
b. What is the area of triangle $D E C$?
c. Does the scale factor for the side lengths apply to the area as well?
4. Which of these statements is true?
A. To know whether 2 triangles are similar, it is enough to know the measure of 1 angle.
B. To know whether 2 triangles are similar, it is enough to know the length of 1 side.
C. To know whether 2 triangles are similar, it is enough to know the measure of 2 angles in each triangle.
D. To know whether 2 triangles are similar, it is enough to know the measure of 2 sides in each triangle.
(From Unit 3, Lesson 10.)
5. a. Are triangles $A B C$ and $D E F$ similar? Show or explain your reasoning.
b. If possible, find the length of $E F$. If not, explain why the length of $E F$ cannot be determined.

(From Unit 3, Lesson 10.)
6. What is the length of segment $D F$?

(From Unit 3, Lesson 9.)
7. The triangle $A B C$ is taken to triangle $A^{\prime} B^{\prime} C^{\prime}$ by a dilation. Select all of the scale factors for the dilation that would result in an image that was smaller than the original figure.
A. $\frac{1}{2}$
B. $\frac{8}{9}$
C. 1
D. $\frac{3}{2}$
E. 2
(From Unit 3, Lesson 3.)
