# Lesson 13

Making New, True Equations

- Let’s practice solving equations.

### 13.1: Math Talk: Evaluating Expressions

Find the value of \(y\) when \(x = 5\).

\(y=3x-4\)

\(y=\frac{2}{5}x+4\)

\(y=2x+3 + (3x - 1)\)

\(y=4x - (x+1)\)

### 13.2: Solving for a Variable

Solve for the indicated variable.

- Solve for \(k\). \(2t+k=6\)
- Solve for \(n\). \(10n=2p\)
- Solve for \(c\). \(12-6d=3c\)
- Solve for \(g\). \(h=8g+4\)
- Solve for \(x\). \(4x+3y=12\)
- Solve for \(y\). \(4x+3y=12\)

### 13.3: Solving Some Equations

Solve each equation.

row | column A | column B |
---|---|---|

1 |
\(4(2x+8)-10 = 14\) |
\(4 + 2(\text-3x+5)=20\) |

2 |
\(3(x-4)+6 = 60\) |
\(3(\frac12x + 9)-5=55\) |

3 |
\(4(\frac{x+3}{2})-5 = 10\) |
\(7-2(6x+1)=\text-49\) |

4 |
\(2x+(5-3x) = 14\) |
\(1=5x+10-4x\) |

5 |
\(4x + 2(3-x)=16\) |
\(x+2(x-4)+5=12\) |

6 |
\(2x - 2(3x-1) = 8\) |
\(\text-6x+2(4x+5)=7\) |