Lesson 15

Congruence for Quadrilaterals

Problem 1

Select all quadrilaterals that have 180 degree rotational symmetry.

A:

trapezoid

B:

isosceles trapezoid

C:

parallelogram

D:

rhombus

E:

rectangle

F:

square

Solution

Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.

(From Unit 2, Lesson 14.)

Problem 2

Lin wrote a proof to show that diagonal \(EG\) is a line of symmetry for rhombus \(EFGH\). Fill in the blanks to complete her proof. 

Rhombus E F G H. Line E G is drawn in the middle of the rhombus.

Because \(EFGH\) is a rhombus, the distance from \(E\) to \(\underline{\hspace{.5in}1\hspace{.5in}}\) is the same as the distance from \(E\) to \(\underline{\hspace{.5in}2\hspace{.5in}}\). Since \(E\) is the same distance from \(\underline{\hspace{.5in}3\hspace{.5in}}\) as it is from \(\underline{\hspace{.5in}4\hspace{.5in}}\), it must lie on the perpendicular bisector of segment \(\underline{\hspace{.5in}5\hspace{.5in}}\). By the same reasoning, \(G\) must lie on the perpendicular bisector of \(\underline{\hspace{.5in}6\hspace{.5in}}\). Therefore, line \(\underline{\hspace{.5in}7\hspace{.5in}}\) is the perpendicular bisector of segment \(FH\). So reflecting rhombus \(EFGH\) across line \(\underline{\hspace{.5in}8\hspace{.5in}}\) will take \(E\) to \(\underline{\hspace{.5in}9\hspace{.5in}}\) and \(G\) to \(\underline{\hspace{.5in}10\hspace{.5in}}\) (because \(E\) and \(G\) are on the line of reflection) and \(F\) to \(\underline{\hspace{.5in}11\hspace{.5in}}\)and \(H\) to \(\underline{\hspace{.5in}12\hspace{.5in}}\) (since \(FH\) is perpendicular to the line of reflection, and \(F\) and \(H\) are the same distance from the line of reflection, on opposite sides). Since the image of rhombus \(EFGH\) reflected across \(EG\) is rhombus \(EHGF\) (the same rhombus!), line \(EG\) must be a line of symmetry for rhombus \(EFGH\).

Solution

Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.

(From Unit 2, Lesson 14.)

Problem 3

In quadrilateral \(ABCD\), \(AD\) is congruent to \(BC\), and \(AD\) is parallel to \(BC\). Andre has written a proof to show that \(ABCD\) is a parallelogram. Fill in the blanks to complete the proof. 

Quadrilateral ABCD with line segment AC.

Since \(AD\) is parallel to \(\underline{\hspace{.5in}1\hspace{.5in}}\), alternate interior angles \(\underline{\hspace{.5in}2\hspace{.5in}}\) and \(\underline{\hspace{.5in}3\hspace{.5in}}\) are congruent. \(AC\) is congruent to \(\underline{\hspace{.5in}4\hspace{.5in}}\) since segments are congruent to themselves. Along with the given information that \(AD\) is congruent to \(BC\), triangle \(ADC\) is congruent to \(\underline{\hspace{.5in}5\hspace{.5in}}\)by the \(\underline{\hspace{.5in}6\hspace{.5in}}\) Triangle Congruence. Since the triangles are congruent, all pairs of corresponding angles are congruent, so angle \(DCA\) is congruent to \(\underline{\hspace{.5in}7\hspace{.5in}}\). Since those alternate interior angles are congruent, \(AB\) must be parallel to \(\underline{\hspace{.5in}8\hspace{.5in}}\). Since we define a parallelogram as a quadrilateral with both pairs of opposite sides parallel, \(ABCD\) is a parallelogram. 

Solution

Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.

(From Unit 2, Lesson 13.)

Problem 4

Select the statement that must be true.

A:

Parallelograms have at least one right angle. 

B:

If a quadrilateral has opposite sides that are both congruent and parallel, then it is a parallelogram. 

C:

Parallelograms have congruent diagonals. 

D:

The height of a parallelogram is greater than the lengths of the sides. 

Solution

Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.

(From Unit 2, Lesson 13.)

Problem 5

\(EFGH\) is a parallelogram and angle \(HEF\) is a right angle. Select all statements that must be true.  

Quadrilateral EFGH with angle HEF as a right angle. Line segments EG and HF intersect at point D.
A:

\(EFGH \) is a rectangle.

B:

Triangle \(HEF\) is congruent to triangle \(GFH\).

C:

Triangle \( HEF\) is congruent to triangle \(FGH\).

D:

\(ED \) is congruent to \(HD\), \(DG\), and \(DF\).

E:

Triangle \(EDH\) is congruent to triangle \(HDG\).

Solution

Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.

(From Unit 2, Lesson 12.)

Problem 6

Figure \(ABCD\) is a parallelogram. Is triangle \(ADB\) congruent to triangle \(CBD\)? Show or explain your reasoning.

\(\overline{AB} \cong \overline{CD}, \angle ADB \cong \angle CBD\)

Parallelogram A B C D, with diagonal D B drawn. D B labeled 29. Sides A B and D C labeled 38. Angles A D B and C B D have congruence marks.

 

Solution

Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.

(From Unit 2, Lesson 11.)

Problem 7

Figure \(KLMN\) is a parallelogram. Prove that triangle \(KNL\) is congruent to triangle \(MLN\).

Quadrilateral KLMN with line segment NL.

 

Solution

Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.

(From Unit 2, Lesson 7.)