# Lesson 13

Using Radians

### Lesson Narrative

In this lesson, students find sector areas and arc lengths for central angles with radian measure. They justify the formula for the area of a sector, and they observe that radian measure simplifies arc length calculations. As students explain why the expression \(\frac12 r^2 \theta\) gives the area of a sector with radius \(r\) units and central angle \(\theta\) radians, they are reasoning abstractly and quantitatively (MP2).

### Learning Goals

Teacher Facing

- Interpret radian measure as the constant of proportionality between an arc length and a radius.
- Justify (in written language) why the formula $\frac12 r^2 \theta$ gives the area of a sector with central angle $\theta$ radians and radius $r$ units.

### Student Facing

- Let’s see how radians can help us calculate sector areas and arc lengths.

### Learning Targets

### Student Facing

- I can calculate the area of a sector whose central angle measure is given in radians.
- I know that the radian measure of an angle can be thought of as the slope of the line $\ell=\theta \boldcdot r$.

### CCSS Standards

### Print Formatted Materials

Teachers with a valid work email address can click here to register or sign in for free access to Cool Down, Teacher Guide, and PowerPoint materials.

Student Task Statements | docx | |

Cumulative Practice Problem Set | docx | |

Cool Down | Log In | |

Teacher Guide | Log In | |

Teacher Presentation Materials | docx |