# Lesson 16

Comparemos perímetros de rectángulos

## Warm-up: Conversación numérica: Dos veces y cuatro veces una fracción (10 minutes)

### Narrative

This Number Talk elicits the strategies and understandings students have for multiplying a whole number and a fraction mentally. The reasoning here prepares students to perform multiplication to solve problems about the perimeter of rectangles with fractional side lengths later in the lesson.

### Launch

• Display one expression.
• “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
• 1 minute: quiet think time

### Activity

• Keep expressions and work displayed.
• Repeat with each expression.

### Student Facing

Encuentra mentalmente el valor de cada expresión.

• $$2 \times \frac{3}{2}$$
• $$4 \times \frac{3}{4}$$
• $$4 \times \frac{9}{4}$$
• $$\left(2 \times \frac{3}{4}\right) + \left(2 \times\frac{9}{4}\right)$$

### Activity Synthesis

• “¿Cómo les ayudan las tres primeras expresiones a encontrar el valor de la última expresión?” // “How do the first three expressions help you find the value of the last expression?”

## Activity 1: Perímetros hechos con limpia pipas (10 minutes)

### Narrative

In this activity, students consider possible side lengths for a rectangle with a perimeter of 12 inches and visualize each rectangle. Students may notice many patterns as they find different rectangles (MP7) including

• the sum of the length and width is 6 inches
• the length and width can be exchanged to give a length and width pair
• when the length is a fraction so is the width and vice versa
MLR8 Discussion Supports. Pair verbal directions with a demonstration to clarify the meaning of terms such as width, length, side length, and entire length.
Action and Expression: Develop Expression and Communication. Give students access to one inch by one inch grid paper.
Supports accessibility for: Conceptual Processing, Visual-Spatial Processing

### Required Materials

Materials to Gather

### Launch

• Groups of 2
• Display a 12-inch pipe cleaner.
• “Este limpia pipas mide 12 pulgadas de largo. Si usamos la longitud total para formar un rectángulo, ¿cuál podría ser una pareja posible de largo y ancho?” // “This pipe cleaner is 12 inches long. If we use the entire length to form a rectangle, what might be one possible pair of length and width?” (Sample responses: 4 inches and 2 inches)
• “Piensen en algunas parejas de largo y ancho. Escríbanlas en la tabla” // “Think of some other pairs of length and width and record them in the table.”
• “Cada pareja debe ser única. Si ya escribieron la pareja 4 pulgadas y 2 pulgadas en la lista, no escriban 2 pulgadas y 4 pulgadas como si fuera otra pareja” // “Each pair should be unique. If you have listed 4 inches and 2 inches as a pair, do not list 2 inches and 4 inches as another pair.”

### Activity

• 5 minutes: partner work time

### Student Facing

¿Cuántos rectángulos diferentes se pueden formar usando la longitud total de un limpia pipas de 12 pulgadas de largo?

1. Escribe todas las parejas de longitudes de lados que se te ocurran. Prepárate para explicar cómo razonaste.

### Student Response

Students may list only whole-number side lengths. consider asking: “¿Has intentado usar una fracción como la longitud de un lado?” // “Have you tried using a fraction as a side length?”

### Activity Synthesis

• Invite students to share a set of side lengths.
• Record responses. This table will be used in the next activity.
• If students do not offer fractional side lengths as an option consider asking students to consider a pair of side lengths that includes fractions.

## Activity 2: Predicciones sobre perímetros (15 minutes)

### Narrative

In this activity, students build rectangles with a perimeter of 12 inches and varied side lengths. Then, they reason about the side lengths of rectangles whose perimeters are multiples of 12.

### Required Materials

Materials to Gather

### Required Preparation

• Each group of 2 needs a 12-inch pipe cleaner, an inch ruler, and tape.

### Launch

• Groups of 2
• Assign one pair of side lengths from the table created in the previous lesson for each group to build.

### Activity

• “Después de que hayan construido su rectángulo, encuentren su perímetro. Recuerden que el perímetro es la distancia total que hay alrededor de una figura” // “After you have built your rectangle, find its perimeter. You may remember that the perimeter is the total distance all the way around a shape.”
• 2 minutes: partner work time
• When the rectangles are built, ask: “¿Cuál es el perímetro de su rectángulo?” // “What is the perimeter of your rectangle?” (12 inches) “¿Cómo lo saben?” // “How do you know?” (The length of the pipe cleaner is 12 inches and we used the entire length.)
• Display two pipe cleaners that are joined without overlaps. “¿Cuál es la longitud total de estos limpia pipas?” // “What is the combined length of these pipe cleaners?” (24 inches) “¿Cómo lo saben?” // “How do you know?” (It’s 2 times 12 inches.)
• “Completen el resto de la actividad con su compañero” // “Work with your partner to complete the rest of the activity.”
• 5–7 minutes: partner work time

### Student Facing

1. Tu profesor te va a asignar una pareja de longitudes de lados. Usa un limpia pipas para construir un rectángulo que tenga esas longitudes de lados.

¿Cuál es el perímetro de tu rectángulo?

2. Dos limpia pipas de 12 pulgadas se unen (sin superposiciones) para formar un palito más largo que luego se usa para construir un cuadrado.

3. Varios limpia pipas se unen (sin superposiciones) para construir un cuadrado que tiene un perímetro de 60 pulgadas.

1. ¿Cuántos limpia pipas se usaron? Explica o muestra cómo lo sabes.

### Student Response

Students may confuse the idea of perimeter with that of area. For instance, when asked to find possible side lengths for squares with perimeters 24 inches and 60 inches, they may think that they are to find numbers that multiply to 24 and 60 inches, respectively. Urge them to visualize a 24-inch long or 60-inch long pipe cleaner being bent to form a square. “¿Qué tan largo sería cada lado?” // “How long would each side be?”

### Activity Synthesis

• Invite students to share their responses to the last two problems and their reasoning.
• “¿Cómo supieron que en el último problema se usaron 5 limpia pipas?” // “How did you know that 5 pipe cleaners were used in the last problem?” (60 is 5 times 12.)
• “¿Cómo supieron que la longitud de lado del último cuadrado era 15 pulgadas?” // “How did you know that the side length of the last square is 15 inches?” (The perimeter of a square is 4 times its side length. $$4 \times 15 = 60$$)
• Consider displaying a table as shown here to highlight the relationships between the number of pipe cleaners used, the perimeter of the square, and the side length of the square.
1 12 3
2 24 6
5 60 15

//

number of pipe cleaners perimeter (inches) side length of square (inches)
1 12 3
2 24 6
5 60 15

### Narrative

In this activity, students continue to think about the relationship between side lengths and perimeter by drawing (on grid paper) rectangles when given the perimeter, one or both side lengths, or the relationship between two rectangles. They apply what they learned in an earlier unit about comparing quantities multiplicatively.

### Required Materials

Materials to Gather

Materials to Copy

• Centimeter Grid Paper - Standard

### Launch

• Groups of 2
• Give each student a sheet of centimeter grid paper and a straightedge or ruler.
• “Cada cuadrado de la cuadrícula mide 1 centímetro por 1 centímetro” // “Each square on the grid is 1 centimeter by 1 centimeter.”

### Activity

• “Tómense unos minutos en silencio para dibujar algunos rectángulos, basándose en lo que les piden. Asegúrense de marcar cada rectángulo con las longitudes de sus lados y su perímetro” // “Take a few quiet minutes to draw some rectangles based on the requirements given to you. Be sure to label each rectangle with its side lengths and perimeter.”
• 7–8 minutes: independent work time
• 2–3 minutes: partner discussion
• Monitor for students who choose different pairs of side lengths for rectangle A.

### Student Facing

• El rectángulo A tiene un perímetro de 16 centímetros.
• Las longitudes de los lados del rectángulo B miden 3 veces lo que miden las longitudes de los lados del rectángulo A.
• Los lados del rectángulo C miden $$\frac{1}{2}$$ de lo que miden los lados del rectángulo B.
rectángulo largo (cm) ancho (cm) perímetro (cm)
A 16
B
C

2. El rectángulo D tiene un perímetro de 96 centímetros.

El perímetro del rectángulo D es:

• __________ veces el perímetro del rectángulo A

• __________ veces el perímetro del rectángulo B

• __________ veces el perímetro del rectángulo C

### Activity Synthesis

• See lesson synthesis.

## Lesson Synthesis

### Lesson Synthesis

Invite previously selected students to share their drawings and completed table from the last activity. Display drawings and tables for all to see.

“¿Cómo encontraron los perímetros de los rectángulos B y C?” // “How did you find the perimeter for rectangle B and C?” (Sample responses:

• I doubled the length and doubled the width, and then added those two numbers.
• I added the length and width and then multiplied the sum by 2.
• I added up all the side lengths.)