Lesson 3

Productos parciales en algoritmos

Warm-up: Cuál es diferente: Multipliquemos números grandes (10 minutes)

Narrative

This warm-up prompts students to compare four representations of multiplication. Students compare diagrams and equations that represent multi-digit multiplication. This prepares them for the work of the lesson where they compare different ways to represent products as sums of partial products. 

Launch

  • Groups of 2
  • Display the image.
  • “Escojan uno que sea diferente. Prepárense para compartir por qué es diferente” // “Pick one that doesn’t belong. Be ready to share why it doesn’t belong.”
  • 1 minute: quiet think time

Activity

  • “Discutan con su compañero lo que pensaron” // “Discuss your thinking with your partner.”
  • 2–3 minutes: partner discussion
  • Share and record responses.

Student Facing

¿Cuál es diferente? 

ADiagram, rectangle partitioned vertically into 4 rectangles.
Bmath expression. 4 times 5 thousand, plus, 4 times three hundred, plus, 4 times 40, plus, 4 times 2
CDiagram, rectangle partitioned vertically into 3 rectangles.
DDiagram, rectangle partitioned vertically into 4 rectangles.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Por qué B es diferente?” // “Why doesn't B belong?” (It's not a diagram. It's an expression.)
  • “¿El valor de la expresión B corresponde al valor representado en alguno de los diagramas?” // “Does the value of expression B match the value represented in any of the diagrams?" (Yes, diagrams A and C both represent the product \(4 \times 5,\!342\) and that's the same as B.)

Activity 1: Productos parciales en todas partes (20 minutes)

Narrative

The goal of this activity is for students to examine different ways to write the product of a three-digit number and a two-digit number as a sum of partial products. Students match sets of partial products which can be put together to make the full product. Students are provided blank diagrams, familiar from the previous lesson, that they may choose to use to support their reasoning. In the activity synthesis, students relate the expressions and diagrams to equations to prepare them to analyze symbolic notation for partial products in the next activity.

When students relate partial products and diagrams to the product \(245 \times 35\) they look for and identify structure (MP7).

MLR8 Discussion Supports. Display the following sentence frame to support small-group discussion: “Observé _____, entonces asocié . . .” // “I noticed _____ , so I matched . . . .” Encourage students to challenge each other when they disagree.
Advances: Speaking, Conversing

Required Materials

Materials to Copy

  • Partial Product Expressions

Required Preparation

  • Create a set of cards from the blackline master for each group of 2.

Launch

  • Groups of 2
  • Display first image from student book.
  • “¿Qué producto se representa con este rectángulo?” // “What product does this rectangle represent?” (\(245 \times 35\))
  • “Hoy, por turnos con su compañero, van a escoger expresiones que se pueden sumar para obtener el producto \(245 \times 35\). Si les ayuda, usen los diagramas para explicar cómo razonaron” // “Today, you are going to take turns with your partner picking expressions that can be added together to give the product \(245 \times 35\). You can use the diagrams to explain your reasoning, if they are helpful.”

Activity

  • 10 minutes: partner work time
  • Monitor for students who:
    • use the diagram to determine which expressions they will use.
    • look at the expressions and think about how they could be used to find the full product.
    • compute the full product in different ways.

Student Facing

Diagram, rectangle partitioned vertically and horizontally into 6 rectangles.
Diagram, rectangle partitioned vertically and horizontally into 6 rectangles.
Diagram, rectangle partitioned vertically and horizontally into 6 rectangles.
  1. Por turnos, escojan un grupo de expresiones que al sumarlas sean iguales a \(245 \times 35\). Usen los diagramas si les ayuda.
  2. Expliquen cómo saben que la suma de sus expresiones es igual a \(245 \times 35\).
  3. ¿Cuál es el valor de \(245 \times 35\)? Expliquen o muestren su razonamiento.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students do not choose correct expressions to represent a sum that is equal to \(245 \times 35\), refer to one of the empty boxes in the diagram and ask, “¿Cuál expresión de multiplicación representa este producto parcial?” // “Which multiplication expression represents this partial product?”

Activity Synthesis

  • Invite previously selected students to share their strategies. As students share, record their reasoning with equations.
  • Display: \(245 \times 30 + 245 \times 5  = 245 \times 35\)
  • “¿Cómo saben que esta ecuación es verdadera?” // “How do you know this equation is true?” (I can put the 30 and 5 together since they are both multiplied by 245. I see that \(245 \times 30\) is the top part of the diagram and \(245 \times 5\) is the bottom part. Together that’s the whole diagram.)

Activity 2: Escribamos productos parciales (15 minutes)

Narrative

The purpose of this activity is for students to consider 2 different ways of recording partial products in an algorithm that they worked with in a previous course. The numbers are the same as in the previous activity to allow students to make connections between the diagram and the written strategies. Students examine two different ways to list the partial products in vertical calculations, corresponding to working from left to right and from right to left. Regardless of the order, the key idea behind the algorithm is to multiply the values of each digit in one factor by the values of each digit in the other factor. 

Action and Expression: Develop Expression and Communication. Provide access to a variety of tools. Provide access to colored pencils or highlighters they can use to identify the partial products.
Supports accessibility for: Visual-Spatial Processing, Conceptual Processing

Launch

  • Groups of 2
  • “Vamos a examinar dos formas en las que los estudiantes escribieron productos parciales para multiplicar 245 por 35” // “We’re going to look at two ways students recorded partial products for multiplying 245 by 35.”
  • Display the image of Andre’s and Clare’s calculations.
  • “¿Cómo se relaciona esto con lo que ustedes acaban de hacer?” // “How does this relate to what you just did?” (You can see they split it up into different partial products and listed the results to add them up.)

Activity

  • 3 minutes: independent work time
  • 5 minutes: partner work time
  • Monitor for students who identify a pattern for how Andre and Clare list the partial products

Student Facing

Andre

multiply. two hundred forty five times 35.

Clare

multiply. two hundred forty five times 35.
  1. ¿En qué se parecen las estrategias de Andre y Clare? ¿En qué son diferentes?
  2. Haz una lista de ecuaciones que correspondan a los productos parciales que Andre y Clare encontraron.

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Advancing Student Thinking

If students do not write the correct equations, refer to the individual partial products and ask, “¿En qué parte de la expresión de multiplicación \(245 \times 35\) está representado este producto parcial?” // “Where is this partial product represented in the multiplication expression \(245 \times 35\)?”

Activity Synthesis

  • “En ambas estrategias se usa un algoritmo que hace una lista de los productos parciales. Un algoritmo es una serie de pasos que, si se siguen correctamente, siempre funciona” // “Both of these strategies use an algorithm that lists the partial products. An algorithm is a set of steps that works every time as long as the steps are carried out correctly.”
  • “¿En qué se parecen ambas estrategias?” // “How are both the approaches the same?” (They both multiply ones and tens by hundreds, tens, and ones.)
  • “¿En qué se diferencian las estrategias?” // “How are the approaches different?” (One starts with the hundreds and the other starts with the ones. One goes from left to right and the other goes from right to left.)
  • “¿Por qué es importante hacer una lista de los productos de una forma organizada?” // “Why is it important to list the products in an organized way?” (That way I know I found all the partial products. I did not leave some out or take some twice.)
  • Display:
    \(245 \times 35\)
  • Display student work to show the list of equations from the second problem or use the list in the student responses.
  • “¿Cómo se relaciona cada expresión con el producto \(245 \times 35\)?” // “How does each expression relate to the product \(245 \times 35\)?” (\(30 \times 200\) is the product of the 3 in the tens place of 35 and the 2 in the hundreds place of 245.)

Lesson Synthesis

Lesson Synthesis

“Hoy usamos productos parciales para encontrar productos de números de dos dígitos por números de tres dígitos. Entendimos cómo los diagramas nos pueden ayudar a asegurarnos de encontrar todos los productos parciales. También nos dimos cuenta de que podemos hacer una lista de los productos parciales usando un algoritmo” // “Today we found products of two-digit and three-digit numbers using partial products. We saw how diagrams can help us make sure we found all the partial products. We also saw we could list partial products using an algorithm.”

“¿Cómo saben que con todas las formas de encontrar el producto se obtiene la misma respuesta?” // “How do you know that all the different ways to find the product give the same answer?” (You’re always adding up the same partial products, just calculating them and putting them together in different ways.)

“¿Qué es útil recordar al usar productos parciales para encontrar un producto total?” // “What is helpful to remember when you are using partial products to determine a full product?” (You have to make sure to find all of the partial products. You have to make sure you add them. Sometimes I can add them mentally and then don't need to list all of them.)

Cool-down: Usa productos parciales (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.