Lesson 9
Solutions of Inequalities
Lesson Narrative
In this lesson, students consider situations where there might be more than one condition. Students have already learned “solution to an equation” to mean a value of the variable that makes the equation true. Here, they learn a similar definition about inequalities: a solution to an inequality is a value of the variable that makes the inequality true. But while the equations students solved in the last unit generally had one solution, the inequalities they solve in this unit have many, sometimes infinitely many, solutions.
Constraints in realworld situations reduce the range of possible solutions. Students reason abstractly by using inequalities or graphs of inequalities to represent those situations and interpreting the solutions, (MP2). Students think carefully about whether to include boundary values as solutions of inequalities in various contexts.
Learning Goals
Teacher Facing
 Draw and label a number line diagram to represent the solutions to an inequality.
 Recognize and explain (orally and in writing) that an inequality may have infinitely many solutions.
 Use substitution to justify (orally) whether a given value is a “solution” to a given inequality.
Student Facing
Let’s think about the solutions to inequalities.
Required Materials
Required Preparation
The included blackline master is for the optional activity, “What Number Am I?” Print and cut up slips from the blackline master. Prepare 1 set of inequalities and 1 set of numbers for each group of 4 students. Colored pencils are only needed for an “Are You Ready for More” problem.
Learning Targets
Student Facing
 I can determine if a particular number is a solution to an inequality.
 I can explain what it means for a number to be a solution to an inequality.
 I can graph the solutions to an inequality on a number line.
CCSS Standards
Addressing
Glossary Entries

solution to an inequality
A solution to an inequality is a number that can be used in place of the variable to make the inequality true.
For example, 5 is a solution to the inequality \(c<10\), because it is true that \(5<10\). Some other solutions to this inequality are 9.9, 0, and 4.
Print Formatted Materials
Teachers with a valid work email address can click here to register or sign in for free access to Cool Down, Teacher Guide, and PowerPoint materials.
Student Task Statements  docx  
Cumulative Practice Problem Set  docx  
Cool Down  Log In  
Teacher Guide  Log In  
Teacher Presentation Materials  docx  
Blackline Masters  zip 