# Lesson 11

Una parte más grande

## Warm-up: Conteo grupal: 10 más, 10 menos (10 minutes)

### Narrative

The purpose of this Choral Count is to invite students to practice counting on and counting back from two-digit numbers by 10 and notice patterns in the count. These understandings help students develop fluency with 10 more and 10 less.

### Launch

• “Cuenten de 10 en 10, empezando en 6” // “Count by 10, starting at 6.”
• Record as students count.
• Stop counting and recording at 116.
• “Cuenten hacia atrás de 10 en 10, empezando en 116” // “Count back by 10 starting at 116.”
• Record as students count.
• Stop counting and recording at 6.

### Activity

• “¿Qué patrones ven?” // “What patterns do you see?”
• 1-2 minutes: quiet think time
• Record responses.

### Activity Synthesis

• “¿Quién puede describir el patrón con otras palabras?” // “Who can restate the pattern in different words?”
• “¿Alguien quiere compartir otra observación sobre por qué ocurre ese patrón aquí?” // “Does anyone want to add an observation on why that pattern is happening here?”

## Activity 1: ¿Cuál es más grande? (15 minutes)

### Narrative

In previous lessons, students identified halves and fourths of rectangles and circles and have partitioned these shapes into halves and fourths. The purpose of this activity is for students to reason about the size of halves and fourths of the same shape. Because of their prior work with comparing quantities of objects, students may reason that because four pieces are more than two pieces, a fourth should be larger than a half. When students compare the sizes of a half and fourth of the same-size circle and repeat the comparison with a half and a fourth of the same sized square, they begin to generalize that when you partition the same-size shape into more parts, the size of each part gets smaller (MP8).
MLR7 Compare and Connect. Synthesis: Lead a discussion comparing, contrasting, and connecting the different observations. Ask, “¿Qué se dijo acerca de doblar los cuadrados?” // “What was shared about folding the squares?”, “¿Qué se dijo acerca de doblar los círculos?” // “What was shared about folding the circles?”, and “¿En qué se parecieron y en qué fueron diferentes esas observaciones?” // “How were those observations the same and different?” Advances: Representing, Conversing
Action and Expression: Develop Expression and Communication. Provide students with alternatives to writing on paper: students can share their learning orally.
Supports accessibility for: Language, Conceptual Processing

### Required Materials

Materials to Gather

### Launch

• Groups of 2
• Give each student a pair of scissors.

### Activity

• 10 minutes: partner work time
• Monitor for students who notice that the halves are bigger than the fourths for both shapes.

### Student Facing

• Cada compañero recorta su círculo.
• Decidan quién va a recortar mitades y quién va a recortar cuartos.
• Doblen su círculo en mitades o en cuartos y luego recórtenlo.
• Comparen sus piezas con las de su compañero.
• ¿Qué observan?
• Prepárense para explicar cómo pensaron de una manera que los demás puedan entender.

• Comparen sus piezas con las de su compañero.
• ¿Qué observan?
• Prepárense para explicar cómo pensaron de una manera que los demás puedan entender.

1. Escriban 2 cosas que observan sobre sus piezas.

### Activity Synthesis

• Invite previously identified students to share.
• “___ observó que en ambas figuras, una mitad de la figura era más grande que un cuarto de la figura. ¿Creen que esto siempre será verdadero? ¿Por qué?” // “___ noticed that for both same-sized shapes, a half of the shape was bigger than a fourth of the shape. Do you think that will always be true? Why?” (Yes. When you cut a circle into halves, it is two pieces. Then if you cut it into fourths, you get four smaller pieces. Fourths are smaller than halves of the same-size shape.)

## Activity 2: Priya y Han comparten roti (10 minutes)

### Narrative

The purpose of this activity is to help students generalize that partitioning the same-size shape into fourths creates smaller pieces than partitioning it into halves. This builds on work from a previous activity in which students compare halves and fourths of circles and squares. Students generalize that for halves and fourths of the same circle, a half is larger than a fourth (and a fourth is smaller than a half). As students explain how they know, some may show or color half of the circle and label it Priya, then show or color a fourth that is not shaded and label it Han. Some students may also shade in part of a half to show fourths. When students decide whether they agree with Priya's or Han's statement and justify their choice with diagrams and words, they construct viable arguments and critique the reasoning of others (MP3).

### Required Materials

Materials to Gather

### Launch

• Groups of 2
• “¿Qué tipos de comidas se pueden compartir con otra persona?” // “What are some different types of food that you can share with another person?” (pizza, sandwich, papadum, quesadilla, tortilla)
• “En esta imagen se muestra un roti, que es un pan sin levadura de la India” // “This picture shows roti, a flatbread from India.”

### Activity

• 5 minutes: partner work time
• Monitor for a student who shows and can explain that a half is bigger than a fourth.

### Student Facing

Priya y Han están compartiendo un roti.

• Priya dice: “Quiero la mitad del roti porque las mitades son más grandes que los cuartos”.

• Han dice: “Quiero un cuarto del roti porque los cuartos son más grandes que las mitades, porque 4 es mayor que 2”

¿Con quién estás de acuerdo?

Muestra cómo pensaste. Usa dibujos, números o palabras.

Usa el círculo si te ayuda.

### Activity Synthesis

• Invite previously identified students to share.

MLR8 Discussion Supports

• “¿Alguien puede expresar con sus propias palabras lo que compartió _____?” // “Who can restate what ____ shared in their own words?”
• Consider providing students time to restate what they heard to a partner before selecting one or two students to share with the class.
• Ask the original speaker if their peer was accurately able to restate their thinking.

## Activity 3: Conozcamos “Bloques sólidos geométricos: Siente y adivina” (15 minutes)

### Narrative

The purpose of this activity is for students to learn stage 4 of the Geoblocks center. Students guess which geoblock is inside a bag, without looking at the block.

### Required Materials

Materials to Gather

### Required Preparation

• Place 4–6 different geoblocks into a bag that is not see-through for each group of 2 students.

### Launch

• Groups of 2
• Give each group of students a bag containing 4-6 solid shapes.
• “Vamos a aprender una nueva forma de jugar ‘Bloques sólidos geométricos’. Se llama ‘Siente y adivina’” // “We are going to learn a new way to play Geoblocks, called Feel and Guess.”
• “Un compañero va a meter la mano en la bolsa y va a sentir una figura sin mirarla. La va a sentir hasta adivinar cuál figura es. Cuando haya adivinado, saca la figura de la bolsa y se la muestra a su compañero. Si el compañero está de acuerdo, pone la figura nuevamente dentro de la bolsa. Después, intercambien roles” // “One partner will reach into the bag and feel one shape without looking at it. Feel the shape until you can guess which shape it is. Once you guess, remove the shape and show it to your partner. If your partner agrees, put the shape back into the bag, and switch roles.”

### Activity

• 10 minutes: partner work time

### Activity Synthesis

• “De lo que sintieron, ¿qué les ayudó a adivinar cuál era la figura?” // “What did you feel that helped you guess the shape?” (I felt if the shape had points or not. I felt the shape of the sides on the shape.)

## Lesson Synthesis

### Lesson Synthesis

“En esta sección, aprendimos cómo partir figuras en partes iguales. ¿Qué aprendieron?” // “In this section we learned about splitting shapes into equal pieces. What have you learned?” (I learned that a half is larger than a fourth. I learned that a quarter is another way to say a fourth. I learned that when one piece is shaded it is a fourth or a half, but when the entire shape is shaded it’s called 'two of the halves' or 'four of the fourths'.)

## Student Section Summary

### Student Facing

Aprendimos que los círculos y los rectángulos se pueden partir en dos partes iguales que se llaman “mitades” y en cuatro partes iguales que se llaman “cuartas partes” o “cuartos”.