# Lesson 12

Ecuaciones con números desconocidos

## Warm-up: Verdadero o falso: Formemos decenas (10 minutes)

### Narrative

The purpose of this True or False is to elicit strategies and understandings students have for making it easier to find the value of expressions by making a ten. These understandings help students deepen their understanding of the properties of operations and will be helpful later when students will need to fluently add within 100.

### Launch

• Display one statement.
• “Hagan una señal cuando sepan si la afirmación es verdadera o no, y puedan explicar cómo lo saben” // “Give me a signal when you know whether the statement is true and can explain how you know.”
• 1 minute: quiet think time

### Activity

• Share and record answers and strategy.
• Repeat with each statement.

### Student Facing

Decide si cada afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.

• $$40 = 10 + 27 + 3$$

• $$47 = 20 + 7 + 3 + 10$$

• $$60 = 3 + 47 + 10$$

### Activity Synthesis

• “¿Cómo podemos cambiar la segunda ecuación para hacer que sea verdadera?” // “How could we change the second equation to make it true?” (We could change the 10 to 17 or the 20 to 27 because we need 7 more.)

## Activity 1: Acertijos en la recta numérica (20 minutes)

### Narrative

The purpose of this activity is for students to solve addition and subtraction problems within 100 with the unknown in all positions. Students write equations with a ? for the unknown and find the number that makes the equations true. The mathematical context of each problem encourages students to use the number line to reason about what is unknown and how they may represent the problem with an equation (MP2).

Representation: Access for Perception. Use a small toy animal or cut out animal (bird, frog, rabbit, or another animal) to demonstrate the jumping on the number line.
Supports accessibility for: Attention, Organization

### Required Materials

Materials to Copy

• Number Line to 100

### Launch

• Groups of 2
• Give each student a copy of the blackline master.
• Display an image of a blank number line or draw a number line.
• “Hoy van a resolver acertijos para encontrar un número secreto” // “Today you will be solving riddles to find a mystery number.”
• “En cada caso, van a escribir una ecuación que le corresponda al acertijo. Usen el signo ? para representar el número desconocido” // “For each riddle, you will write an equation that represents the riddle, and write a ? for the unknown.”
• “Luego, van a representar la ecuación en la recta numérica” // “Then you will represent the equation on the number line.”
• “Intentemos un acertijo juntos” // “Let’s try one together.”
• Demonstrate on a number line with input from the students.
• “Empecé en un número, salté 10 hacia la izquierda. Mi salto terminó en el 42. ¿Qué ecuación puedo escribir usando el signo ? para representar el número desconocido?” // “I started on a number, jumped 10 to the left. My jump ended at 42. What equation could I write with a ? for the unknown?” (? - 10 = 42)
• “¿Cómo puedo encontrar el valor del número secreto?” // “How could I find the value of the mystery number?” (Do the opposite. Start at 42 and move 10 to the right.)
• 1 minute: quiet think time
• 1 minute: partner discussion
• Share responses and record on the number line.

### Activity

• “Ahora tendrán la oportunidad de resolver acertijos para encontrar un número desconocido. Luego, van a usar una recta numérica para representar cómo pensaron. Su compañero y ustedes pueden tomar turnos para leer el acertijo mientras la otra persona lo sigue a lo largo de la recta numérica” // “Now you will have a chance to solve riddles to find a missing number, and then represent your thinking on a number line. You and your partner can take turns reading the riddle, while the other person follows along on the number line.”
• 12 minutes: partner work time

### Student Facing

Resuelve acertijos para encontrar el número secreto.

• Escribe una ecuación que le corresponda al acertijo y escribe el signo ? para representar el número desconocido.

• Escribe un número secreto. Representa la ecuación en la recta numérica.

1. Empecé en el 15 y salté 17 hacia la derecha. ¿En dónde terminé?

Ecuación: _______________________________

Número secreto: _______________________

2. Empecé en un número y salté 20 hacia la izquierda. Terminé en el 33. ¿Dónde había empezado?

Ecuación: _______________________________

Número secreto: _______________________

3. Empecé en el 42 y terminé en el 80. ¿Cuánto salté?

Ecuación: _______________________________

Número secreto: _______________________

4. Empecé en el 76 y salté 27 hacia la izquierda. ¿En dónde terminé?

Ecuación: _______________________________

Número secreto: _______________________

5. Comencé en un número y salté 19 hacia la derecha. Terminé en el 67. ¿Dónde había empezado?

Ecuación: _______________________________

Número secreto: _______________________

6. Empecé en el 92 y terminé en el 33. ¿Cuánto salté?

Ecuación: _______________________________

Número secreto: _______________________

### Student Response

If students write equations other than those represented by the riddle or number line representation, consider asking:

• “¿Cómo decidiste dónde poner tu punto inicial o tu punto final?” // “How do you decide where to put your starting or ending points?”
• “¿Qué parte del acertijo te puede ayudar a escoger la dirección de tus flechas y tus saltos?” // “What part of the riddle could help you choose the direction for your arrows and jumps?”

### Activity Synthesis

• Invite students to share the answer to each riddle and display their number line.
• “¿Cuáles acertijos les parecieron los más retadores a su compañero y a ustedes? Expliquen” // “Which riddles did you and your partner find to be most challenging? Explain.”

## Activity 2: Hagamos que las ecuaciones sean verdaderas (15 minutes)

### Narrative

The purpose of this activity is for students to find the value of an unknown in addition and subtraction equations. Students can choose to find the unknown number using either operation and represent their thinking on a number line. Listen for the ways students use the number line to make sense of the relationship between the numbers in each equation and use methods that show they are thinking about ways to use the structure of the number line and their understanding of place value (MP7).

MLR8 Discussion Supports.Synthesis: Provide students with the opportunity to rehearse what they will say with a partner before they share with the whole class.

### Required Materials

Materials to Copy

• Number Line to 100

### Launch

• Groups of 2
• Give each student a copy of the blackline master.

### Activity

• “Encuentren, de una manera que tenga sentido para ustedes, el número que hace que cada ecuación sea verdadera” // “Find the number that makes each equation true in a way that makes sense to you.”
• “Usen una recta numérica para mostrar cómo pensaron” // “Represent your thinking on the number line.”
• Monitor for a student who finds the value for $${?} + 57 = 72$$ by:
• starting at 57, drawing a jump to 72, and counting each length unit in between
• staring at 57, drawing a jump of 3 and a jump of 12 to 72
• starting at 72 and jumping back 57 in one jump or multiple jumps

### Student Facing

En cada caso, encuentra el número que hace que la ecuación sea verdadera.

Usa una recta numérica para mostrar cómo pensaste.

1. $${?} - 48 = 19$$

2. $$86 - {?} = 39$$

3. $${?} + 57 = 72$$

4. $$73 + {?} = 91$$

### Activity Synthesis

• Invite previously selected students to share how they found the number that makes $$? + 57 =72$$ true.
• “¿De qué manera la recta numérica de ______ muestra los números que conocíamos? ¿De qué manera muestra el número desconocido?” // “How does ______'s number line show the numbers that we knew? How does it show the unknown number?”
• “¿En qué se parecen estos métodos? ¿En qué son diferentes?” // “How are these methods the same? How are they different?”
• As time permits, continue with other equations.

## Lesson Synthesis

### Lesson Synthesis

“Hoy resolvieron todo tipo de problemas usando la suma y la resta en la recta numérica, con el número desconocido en distintas posiciones. Usaron ecuaciones que tenían un símbolo para representar el número desconocido y encontraron el número que hacía que fueran verdaderas” // “Today you solved all different types of problems on the number line with the unknown in all different positions by using addition and subtraction. You used equations with a symbol for the unknown and found the number that made them true.”

Display $${?} + 14 = 24$$ and $${?} - 14 = 24$$

“¿Cómo puedo encontrar el número que hace que cada una de estas ecuaciones sea verdadera?” // “How could I find the number that makes each of these equations true?” (For the addition equation, you could start at 24 and go to the left 14 on the number line, but for the subtraction equation you could start at 24 and go to the right 14.)

“¿Cómo nos ayudó la recta numérica a trabajar con estos tipos de ecuaciones?” // “How did the number line help with these types of equations?” (I could start with the result and jump in the opposite direction and land on the answer.)