Lesson 6
Expresiones para el volumen
Warm-up: Verdadero o falso: Con paréntesis o sin paréntesis (10 minutes)
Narrative
The purpose of this True or False is for students to demonstrate strategies and understandings they have for determining equivalence of numerical expressions. These understandings help students deepen their understanding of the properties of operations and are helpful as students interpret expressions for volume. In this activity, students have an opportunity to notice and make use of structure (MP7) when they use the properties of operations to determine equivalence without having to calculate.
Launch
- Display one statement.
- âHagan una señal cuando sepan si la afirmaciĂłn es verdadera o no, y puedan explicar cĂłmo lo sabenâ // âGive me a signal when you know whether the statement is true and can explain how you know.â
- 1 minute: quiet think time
Activity
- Share and record answers and strategy.
- Repeat with each statement.
Student Facing
En cada caso, decide si la afirmaciĂłn es verdadera o falsa. PrepĂĄrate para explicar tu razonamiento.
- \((4\times2)\times5=4\times(2\times5)\)
- \((2\times5)\times4=2\times20\)
- \(5\times4\times2=10\times40\)
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Activity Synthesis
- Focus Question: âÂżCĂłmo pueden justificar su respuesta sin evaluar ambos lados?â // âHow can you justify your answer without evaluating both sides?â (I could see on the first equation that all of the factors are the same so it is true.)
- Consider asking:
- âÂżAlguien puede expresar el razonamiento de ___ de otra forma?â // âWho can restate ___âs reasoning in a different way?â
- âÂżAlguien quiere agregar algo al razonamiento de _____?â // âDoes anyone want to add on to _____âs reasoning?â
- âÂżPodemos hacer alguna generalizaciĂłn a partir de las afirmaciones?â // âCan we make any generalizations based on the statements?â
Activity 1: ClasificaciĂłn de tarjetas: Asociemos las expresiones (15 minutes)
Narrative
The purpose of this activity is for students to interpret expressions that represent the volume of a rectangular prism. Students connect the structure in rectangular prisms to the symbols in their related expressions (MP2, MP7). If there is time and you would like to add student movement, have students make a poster to display the sorted cards. Students can walk around and add additional expressions to other posters to represent the volume of the prism.
Advances: Conversing, Representing
Required Materials
Required Preparation
- Create a set of cards from the blackline master for each group of 2.
- Have connecting cubes available for students who need them.
Launch
- Groups of 2
- Distribute one set of pre-cut cards to each group of students.
- âÂżQuĂ© observan sobre los prismas en estas tarjetas?â // âWhat do you notice about the prisms on these cards?â (They donât have any cubes, It says âunitsâ.)
- âCuando las medidas estĂĄn en unidades, los cubos que usamos para llenar el prisma se llaman unidades cĂșbicasâ // âWhen the measurements are in units, the cubes we use to fill the prism are called cubic units.â
Activity
- âEn esta actividad, van a clasificar tarjetas en las categorĂas que ustedes elijan. Cuando clasifiquen las tarjetas, deben escoger las categorĂas con su parejaâ // âIn this activity, you will sort some cards into categories of your choosing. When you sort the cards, you should work with your partner to come up with categories.â
- 4 minutes: partner work time
- Select groups to share their categories and how they sorted their cards.
- âAhora, en parejas, asocien cada prisma a las expresiones que representen su volumenâ // âNow work with your partner to match each prism with the expressions that represent the volume.â
- 3 minutes: partner work time
Student Facing
- Asocia cada prisma rectangular con la expresiĂłn o expresiones que representen su volumen, en unidades cĂșbicas. PrepĂĄrate para explicar tu razonamiento.
- Para cada prisma, escribe una nueva expresiĂłn que represente su volumen, en unidades cĂșbicas.

Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students do not correctly match expressions to the prisms, ask:
âÂżCĂłmo nos ayuda usar los cubos encajables a asociar las expresiones con los prismas?â // âHow can we use the connecting cubes to help you match the expressions to the prisms?â
Activity Synthesis
- Select groups to share their matches.
- Display Prism A:
-
âÂżCĂłmo representan estas expresiones el volumen?â // âHow do these expressions represent the volume?â
- \(6\times(5\times3)\)
- \((6\times5)\times3\)
- \(15\times6\)
- Display:
- \((5\times3)\times6\) = \(15\times6\)
- âÂżCĂłmo se relaciona esta ecuaciĂłn con el prisma A?â // âHow does the equation relate to Prism A?â (Both expressions show that the prism has a height of 6. One expression shows the side lengths of the base. The other expression shows the area of the base.)
Activity 2: Un cuento de dos tablas (10 minutes)
Narrative
The purpose of this activity is for students to compare and contrast two different ways to calculate the volume of a rectangular prism: multiplying the area of the base and its corresponding height, and multiplying all three side lengths. Students see that both of these strategies result in the same volume. It is a convention to consider a prismâs base the face it is resting on, however when calculating the volume of a rectangular prism, any face of the prism can be considered a base as long it is multiplied by the corresponding height. Similarly, when calculating the volume of a rectangular prism, any edge can be considered the length, width, or height.
Supports accessibility for: Visual-Spatial Processing, Conceptual Processing
Launch
- Groups of 2
Activity
- 1 minute: independent work time
- 8 minutes: partner work time
Student Facing
- Completa las tablas con tu compañero. Un compañero completa la tabla 1 y el otro completa la tabla 2.
Prisma A Prisma B Tabla 1
largo (unidades) ancho (unidades) altura (unidades) volumen (unidades cĂșbicas) Prisma A Prisma B Tabla 2
ĂĄrea de la base (unidades cuadradas) altura (unidades) volumen (unidades cĂșbicas) Prisma A Prisma B - Comparen sus tablas y discutan:
- ÂżQuĂ© tienen en comĂșn las tablas?
- ¿En qué son diferentes las tablas?
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If a student does not write the correct corresponding height for a given base, ask âÂżCĂłmo se relacionan los nĂșmeros de la tabla con el prisma?â // âHow do the numbers in the table relate to the prism?â or âÂżCĂłmo decidiste quĂ© nĂșmeros escribir en la tabla?â // âHow did you decide which numbers to write in the table?â
Activity Synthesis
- Ask students to share responses to the second problem. Display the expression: \(6\times3\times4\)
- âÂżCĂłmo representa esta expresiĂłn el volumen del prisma A?â // âHow does this expression represent the volume of prism A?â (The prism's side lengths are 6, 4, and 3 and I multiply them to find the volume.)
- Display expression: \((6\times3)\times4\)
- âÂżCĂłmo representa esta expresiĂłn el volumen del prisma A?â // âHow does this expression represent the volume of prism A?â (One base has a length of 6 units and a width of 3 units and the height is 4 units.)
- âÂżQuĂ© expresiĂłn servirĂa para encontrar el volumen usando la base de 3 unidades por 4 unidades?â // âWhich expression could you use to find the volume using the 3 unit by 4 unit base?â (We could use either \((3\times4)\times6\) or \(6\times(3\times4)\). They are equal and they both represent the volume of the prism.
- Display equation: \((6\times3)\times4\) = \((3\times4)\times6\)
- âÂżCĂłmo saben que la ecuaciĂłn es verdadera?â // âHow do you know the equation is true?â (Both expressions represent the volume of the prism and we can see both expressions in the prism. One of them represents a base with the side lengths 6 and 3 and a height of 4. The other expression represents a base with the side lengths 3 and 4 cubes and a height of 6.)
Activity 3: Dos verdades y una mentira [OPTIONAL] (10 minutes)
Narrative
This activity is optional if students need additional practice writing expressions to represent the volume of a rectangular prism. This activity also supports students in identifying the information they need to represent volume. Students are given the opportunity to write and interpret expressions that show that the volume is the same when multiplying the edge lengths or multiplying the area of the base and height. In the second part of the activity, students reason abstractly and quantitatively when they interpret the meaning of expressions in the context of volume (MP2).
Launch
- Groups of 2
- âCon su pareja van a jugar â2 verdades y una mentiraâ con prismas rectangularesâ // âYou and your partner are going to play 2 truths and a lie with rectangular prisms.â
- âCada uno va a escribir expresiones que representen el volumen de dos prismas. 2 deben ser âverdaderasâ y una âfalsaâ. DespuĂ©s las van a intercambiar para responder algunas preguntasâ // âYou will each write expressions, 2 true and one false, to represent the volume of two prisms and then trade to answer some questions.â
- âUn compañero escribe 2 verdades y una mentira para los prismas A y C y el otro las escribe para los prismas B y Dâ // âOne partner writes 2 truths and a lie for Prisms A and C and the other partner writes about Prisms B and D.â
Activity
- 5 minutes: independent work time (create expressions)
- âIntercambien la hojas de expresiones y vean si pueden descifrar para cada prisma cuĂĄl es la expresiĂłn que es una mentiraâ // âSwitch papers with your partner and see if you can figure out the expression that is a lie for each of their prisms.â
- 5 minutes: independent work time on partnerâs problems (analyze expressions)
Student Facing
Para cada prisma que te asignaron:
- Escribe 2 expresiones que representen su volumen, en unidades cĂșbicas.
- Escribe 1 expresiĂłn que NO represente su volumen, en unidades cĂșbicas.
Intercambien las expresiones. Para cada prisma, respondan:
- ÂżCuĂĄl expresiĂłn no representa su volumen, en unidades cĂșbicas? ÂżCĂłmo lo sabes?
- ÂżQuĂ© otras expresiones representan el volumen de este prisma, en unidades cĂșbicas?
Student Response
Teachers with a valid work email address can click here to register or sign in for free access to Student Response.
Advancing Student Thinking
If students do not write any correct expressions that represent the volume of the prism, refer to an expression that does represent the volume of the prism and ask, âÂżPuedes explicar cĂłmo esta expresiĂłn representa el volumen del prisma?â // âCan you explain how this expression represents the volume of the prism?â
Activity Synthesis
- Display each of the prisms.
- âÂżCuĂĄles expresiones representan el volumen del prisma, en unidades cĂșbicas? ÂżCuĂĄles no?â // âWhich expressions represent the volume of the prism in cubic units? Which do not?â
- âÂżCĂłmo decidieron cuĂĄles expresiones no representaban el volumen de ninguno de los prismas?â // âHow did you decide the expressions that did not represent the volume of a rectangular prism?â (Looking at the different bases and heights and experimenting with expressions. Finding the product and checking that it does not match the volume of any of the prisms.)
Lesson Synthesis
Lesson Synthesis
Display Prism C from activity 1:
âÂżQuĂ© expresiones podrĂamos escribir para representar el volumen de este prisma, en unidades cĂșbicas?â // âWhich expressions could we write to represent the volume of this prism in cubic units?â
For each expression, ask students to explain how it represents the volume of the prism. As students explain, record expressions on a poster for all to see. Use parentheses to show which factors represent the area of a base and which factor represents the corresponding height. If not mentioned by students, display and discuss these expressions.
- \((7 \times 4) \times 3\)
- \(28 \times 3\)
- \((7 \times 3) \times 4\)
- \(21 \times 4\)
- \(7 \times (3 \times 4)\)
- \(7 \times 12\)
Math Community
After the Cool-down, ask students to individually reflect on the following question: âÂżCuĂĄl norma sintieron que fue la mĂĄs importante al trabajar hoy? ÂżPor quĂ©?â // âWhich one of the norms did you feel was most important in your work today, and why?â Students can write their responses on the bottom of their Cool-down paper, on a separate sheet of paper, or in a math journal.
Tell students that as their mathematical community works together over the course of the year, the group will continually add to and revise its âDoing Mathâ and âNormsâ actions and expectations.
Cool-down: Escoge la expresiĂłn (5 minutes)
Cool-Down
Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.