Lesson 13
Multiplying Complex Numbers
Lesson Narrative
This lesson continues the idea from the previous lesson that when complex numbers are combined, the result is also a complex number and can be written in the form \(a+bi\), where \(a\) and \(b\) are real numbers. In this lesson, students use the fact that \(i^2=\text-1\) to multiply imaginary numbers, and use the strategies they develop to multiply complex numbers by writing the \(i^2\) terms as real numbers.
Students also make use of the familiar structure of distributing terms to find the result of multiplying two complex numbers (MP7). To organize their thinking, they can use the same kind of diagrams they used in a previous unit to multiply polynomials.
Learning Goals
Teacher Facing
- Calculate the result of multiplying two complex numbers.
- Justify that two equivalent expressions involving complex numbers are equivalent, using the fact that $i^2=\text-1$.
Student Facing
- Let's multiply complex numbers.
Learning Targets
Student Facing
- I can multiply complex numbers.
CCSS Standards
Print Formatted Materials
Teachers with a valid work email address can click here to register or sign in for free access to Cool Down, Teacher Guide, and PowerPoint materials.
Student Task Statements | docx | |
Cumulative Practice Problem Set | docx | |
Cool Down | Log In | |
Teacher Guide | Log In | |
Teacher Presentation Materials | docx |