Lesson 10

La suma se asoma

Warm-up: Conversación numérica: Sumemos fracciones (10 minutes)

Narrative

The purpose of this Number Talk is for students to demonstrate strategies they have for adding fractions with unlike denominators. These understandings help students develop fluency and will be helpful later in this lesson when students will need to be able to add and subtract fractions with unlike denominators.

Launch

  • Display one expression.
  • “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
  • 1 minute: quiet think time

Activity

  • Record answers and strategy.
  • Keep expressions and work displayed.
  • Repeat with each expression.

Student Facing

Encuentra mentalmente el valor de cada expresión.
  • \(\frac{2}{12}+\frac{1}{6}\)
  • \(\frac{2}{6}+\frac{1}{2}\)
  • \(\frac{1}{3}+\frac{1}{2}\)
  • \(\frac{1}{3}+\frac{3}{2}\)

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Cómo nos ayudan las fracciones equivalentes a sumar fracciones que tienen denominadores diferentes?” // “How do equivalent fractions help us add fractions with unlike denominators?” (It lets me find fractions with the same denominators and then I can just add the numerators.)
  • “¿Cómo deciden qué denominador usar en sus fracciones equivalentes?” // “How do you decide on the denominator to use for your equivalent fractions?” (I either use a common multiple of the 2 denominators that I know or I can multiply the 2 denominators to find a common multiple.)

Activity 1: La mayor suma (15 minutes)

Narrative

The purpose of this activity is for students to practice adding fractions with unlike denominators and to reason about how the size of the numerators and denominators impacts the value of a fraction (MP7). Monitor for students who:

  • place any large numbers like 4, 5, and 6 in the numerator, if possible, and smaller numbers like 1, 2, and 3 in the denominator
  • notice that there are many 1's and 2's on the spinner and try to wait for these and use them as denominators
MLR8 Discussion Supports. Prior to solving the problems, invite students to make sense of the situations and take turns sharing their understanding with their partner. Listen for and clarify any questions about the context.
Advances: Reading, Representing
Engagement: Provide Access by Recruiting Interest. Leverage choice around perceived challenge. Invite students to select the order of problems in which they complete. Invite students to explain why they found which sum before others.
Supports accessibility for: Organization, Attention, Social-emotional skills

Required Materials

Materials to Gather

Required Preparation

  • Each group of 2 needs 1 paper clip for their spinner.

Launch

  • Groups of 2
  • Display: \(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, + \,\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\)
  • Spin the spinner.
  • Write the number in one of the four boxes.
  • Repeat until all four boxes are filled.
  • Ask students to compute the sum.
  • “¿Es posible obtener una suma mayor si ponemos los 4 dígitos en otras casillas?” // “Is it possible to get a larger sum by placing the 4 digits in different boxes?”
  • 1 minute: quiet think time
  • Ask students to share.
  • Give students paper clips.
  • “Ahora van a jugar 4 rondas de ‘La mayor suma’ con su compañero” // “Now you will play 4 rounds of the Greatest Sum with your partner.”

Activity

  • 10–12 minutes: partner work time

Student Facing

Juega “La mayor suma” con un compañero. Sigan estas instrucciones.

  1. Giren la ruleta.
  2. En la ronda 1, cada jugador escribe en una casilla vacía el número que salió. Asegúrense de que su compañero no pueda ver qué número escribieron.
  3. Después de escribir un número, no lo pueden cambiar.
  4. Sigan girando la ruleta y escribiendo números en las casillas vacías hasta que las 4 casillas estén llenas.
  5. Encuentren la suma.
  6. Gana la ronda la persona que tenga la mayor suma.
  7. Después de las 4 rondas, el jugador que haya ganado la mayoría de las rondas gana el juego.
  8. Si hay un empate, los jugadores suman los resultados de las 4 rondas y quien tenga la mayor suma total gana el juego.
Spinner. 8 equal sectors. 4, 1, 5, 2, 3, 1, 6, 2.

Ronda 1

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}} \,+ \,\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Ronda 2

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}} \,+ \, \frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Ronda 3

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, + \, \frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Ronda 4

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, + \, \frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Suma total de las 4 rondas:

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué estrategias les ayudaron mientras jugaban ‘La mayor suma’?” // “What strategies were helpful as you played Greatest Sum?” (I tried to make fractions that have a larger numerator than denominator so they would be greater than one. I tried to make sure the ones and twos were in the denominator and put bigger numbers in the numerator.)
  • “¿Cómo sumaron sus fracciones?” // “How did you add your fractions?” (My denominators were 1, 2, 3, and 4 so I used 12 as a common denominator for all of them.)

Activity 2: La menor suma (20 minutes)

Narrative

The purpose of this activity is for students to practice adding fractions with unlike denominators. Monitor for students who notice that the overall strategy in this game is the same as in the previous game except that the numbers that they placed in the numerator in the first game go in the denominator in this game and similarly the numbers that went in the denominator in the first game go in the numerator in this game (MP8).

Required Materials

Materials to Gather

Required Preparation

  • Each group of 2 needs a paper clip.

Launch

  • Groups of 2
  • “Tómense un minuto para leer las instrucciones de ‘La menor suma’” // “Take a minute to read over the directions for Smallest Sum.”
  • 1 minute: quiet think time
  • Give students paper clips.
  • “Jueguen ‘La menor suma’ con su compañero” // “Play Smallest Sum with your partner.”

Activity

  • 10–15 minutes: partner work time

Student Facing

Juega “La menor suma” con un compañero. Sigan estas instrucciones.

  1. Giren la ruleta.
  2. En la ronda 1, cada jugador escribe en una casilla vacía el número que salió. Asegúrense de que su compañero no pueda ver qué número escribieron.
  3. Después de escribir un número, no lo pueden cambiar.
  4. Sigan girando la ruleta y escribiendo números en las casillas vacías hasta que las 4 casillas estén llenas.
  5. Encuentren la suma.
  6. Gana la ronda la persona que tenga la menor suma.
  7. Después de las 4 rondas, el jugador que haya ganado la mayoría de las rondas gana el juego.
  8. Si hay un empate, los jugadores suman los resultados de las 4 rondas y quien tenga la menor suma total gana el juego.
Spinner. 8 equal sectors. 4, 1, 5, 2, 3, 1, 6, 2.

Ronda 1

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}} \,+ \,\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Ronda 2

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}} \,+ \, \frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Ronda 3

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, + \, \frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Ronda 4

\(\frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, + \, \frac{\boxed{\phantom{111\frac{1}{1}}}}{\boxed{\phantom{111\frac{1}{1}}}}\, =\)

Suma total de las 4 rondas:

Student Response

Teachers with a valid work email address can click here to register or sign in for free access to Student Response.

Activity Synthesis

  • “¿Qué estrategias les ayudaron mientras jugaban ‘La menor suma’?” // “What strategies were helpful as you played Smallest Sum?” (I tried to make unit fractions with large denominators. I used the opposite strategy to the previous game, trying to put the smallest numbers in the numerator and the largest numbers in the denominator.)

Lesson Synthesis

Lesson Synthesis

“Hoy jugamos algunos juegos que nos ayudaron a practicar la suma de fracciones. ¿Cómo les ayudaron los juegos a pensar en la suma de fracciones?” // “Today, we played some games that helped us practice adding fractions. How did the games help you think about adding fractions?” (I had to add the fractions that I made from the numbers I got with the spinner. The fractions in the sums had small denominators so it was not hard to find a common denominator.)

Cool-down: Reflexiona sobre la suma de fracciones (5 minutes)

Cool-Down

Teachers with a valid work email address can click here to register or sign in for free access to Cool-Downs.