Lesson 5
A New Way to Interpret $a$ over $b$
Problem 1
Select all the expressions that equal \(\frac{3.15}{0.45}\).
\((3.15) \boldcdot (0.45)\)
\((3.15) \div (0.45)\)
\((3.15) \boldcdot \frac{1}{0.45}\)
\((3.15) \div \frac{45}{100}\)
\((3.15) \boldcdot \frac{100}{45}\)
\(\frac{0.45}{3.15}\)
Solution
Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.
Problem 2
Which expressions are solutions to the equation \(\frac{3}{4}x = 15\)? Select all that apply.
\(\frac{15}{\frac{3}{4}}\)
\(\frac{15}{\frac{4}{3}}\)
\(\frac{4}{3} \boldcdot 15\)
\(\frac{3}{4} \boldcdot 15\)
\(15 \div \frac{3}{4}\)
Solution
Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.
Problem 3
Solve each equation.
\(4a = 32\)
\(4=32b\)
\(10c = 26\)
\(26=100d\)
Solution
Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.
Problem 4
For each equation, write a story problem represented by the equation. For each equation, state what quantity \(x\) represents. If you get stuck, consider drawing a diagram.

\(\frac{3}{4} + x = 2\)

\(1.5x = 6\)
Solution
Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.
Problem 5
Write as many mathematical expressions or equations as you can about the image. Include a fraction, a decimal number, or a percentage in each.
Solution
Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.
(From Unit 2, Lesson 22.)Problem 6
In a lilac paint mixture, 40% of the mixture is white paint, 20% is blue, and the rest is red. There are 4 cups of blue paint used in a batch of lilac paint.
 How many cups of white paint are used?
 How many cups of red paint are used?
 How many cups of lilac paint will this batch yield?
If you get stuck, consider using a tape diagram.
Solution
Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.
(From Unit 2, Lesson 21.)Problem 7
Triangle P has a base of 12 inches and a corresponding height of 8 inches. Triangle Q has a base of 15 inches and a corresponding height of 6.5 inches. Which triangle has a greater area? Show your reasoning.
Solution
Teachers with a valid work email address can click here to register or sign in for free access to Formatted Solution.
(From Unit 1, Lesson 8.)