# Lesson 10

Different Options for Solving One Equation

### Lesson Narrative

The purpose of this lesson is to practice solving equations of the form $$p(x+q)=r$$, and to notice that one of the two ways of solving may be more efficient depending on the numbers in the equation.

### Learning Goals

Teacher Facing

• Critique (orally and in writing) a given solution method for an equation of the form $p(x+q)=r$.
• Evaluate (orally) the usefulness of different approaches for solving a given equation of the form $p(x+q)=r$.
• Recognize that there are two common approaches for solving an equation of the form $p(x+q)=r$, i.e., expanding using the distributive property or dividing each side by p.

### Student Facing

Let’s think about which way is easier when we solve equations with parentheses.

### Student Facing

• For an equation like $3(x+2)=15$, I can solve it in two different ways: by first dividing each side by 3, or by first rewriting $3(x+2)$ using the distributive property.
• For equations with more than one way to solve, I can choose the easier way depending on the numbers in the equation.