Lesson 6
Distinguishing between Two Types of Situations
Lesson Narrative
The purpose of this lesson is to distinguish equations of the form \(px+q = r\) and \(p(x+q) = r\). Corresponding tape diagrams are used as tools in this work, along with situations that these equations can represent. First, students sort equations into categories of their choosing. The main categories to highlight distinguish between the two main types of equations being studied. Then, students consider two stories and corresponding diagrams and write equations to represent them. They use these representations to find an unknown value in the story.
Learning Goals
Teacher Facing
- Categorize equations of the forms $px+q=r$ and $p(x+q)=r$, and describe (orally) the categories.
- Interpret a verbal description of a situation (in written language), and write an equation of the form $px+q=r$ or $p(x+q)=r$ to represent it.
Student Facing
Let’s think about equations with and without parentheses and the kinds of situations they describe.
Required Materials
Required Preparation
Print and cut up copies of the blackline master ahead of time. You will need 1 set for every 2 students. If possible, copy each complete set on a different color of paper, so that a stray slip can quickly be put back.
Learning Targets
Student Facing
- I understand the similarities and differences between the two main types of equations we are studying in this unit.
- When I have a situation or a tape diagram, I can represent it with an equation.
CCSS Standards
Print Formatted Materials
Teachers with a valid work email address can click here to register or sign in for free access to Cool Down, Teacher Guide, and PowerPoint materials.
Student Task Statements | docx | |
Cumulative Practice Problem Set | docx | |
Cool Down | Log In | |
Teacher Guide | Log In | |
Teacher Presentation Materials | docx | |
Blackline Masters | zip |