Lesson 3

Rational and Irrational Numbers

Lesson Narrative

In previous lessons, students learned that square root notation is used to write the side length of a square given the area of the square. For example, a square whose area is 17 square units has a side length of \(\sqrt{17}\) units.

In this lesson, students build on their work with square roots to learn about a new mathematical idea, irrational numbers. Students recall the definition of rational numbers (MP6) and use this definition to search for a rational number \(x\) such that \(x^2 = 2\). Students should not be left with the impression that looking for and failing to find a rational number whose square is 2 is a proof that \(\sqrt{2}\) is irrational; this exercise is simply meant to reinforce what it means to be irrational and to provide some plausibility for the claim. Students are not expected to prove that \(\sqrt{2}\) is irrational in grade 8, and so ultimately must just accept it as a fact for now.

In the next lesson, students will learn strategies for finding the approximate location of an irrational number on a number line.


Learning Goals

Teacher Facing

  • Comprehend the term “irrational number” (in spoken language) to mean a number that is not rational and that $\sqrt{2}$ is an example of an irrational number.
  • Comprehend the term “rational number” (in written and spoken language) to mean a fraction or its opposite.
  • Determine whether a given rational number is a solution to the equation $x^2=2$ and explain (orally) the reasoning.

Student Facing

Let’s learn about irrational numbers.

Required Materials

Required Preparation

It would be useful throughout this unit to have a list of perfect squares for easy reference. Consider hanging up a poster that shows the 20 perfect squares from 1 to 400. It is particularly handy in this lesson.

Learning Targets

Student Facing

  • I know what an irrational number is and can give an example.
  • I know what a rational number is and can give an example.

CCSS Standards

Building On

Addressing

Building Towards

Glossary Entries

  • irrational number

    An irrational number is a number that is not a fraction or the opposite of a fraction.

    Pi (\(\pi\)) and \(\sqrt2\) are examples of irrational numbers.

  • rational number

    A rational number is a fraction or the opposite of a fraction.

    Some examples of rational numbers are: \(\frac74,0,\frac63,0.2,\text-\frac13,\text-5,\sqrt9\)

  • square root

    The square root of a positive number \(n\) is the positive number whose square is \(n\). It is also the the side length of a square whose area is \(n\). We write the square root of \(n\) as \(\sqrt{n}\).

    For example, the square root of 16, written as \(\sqrt{16}\), is 4 because \(4^2\) is 16.  

    \(\sqrt{16}\) is also the side length of a square that has an area of 16. 

Print Formatted Materials

Teachers with a valid work email address can click here to register or sign in for free access to Cool Down, Teacher Guide, and PowerPoint materials.

Student Task Statements pdf docx
Cumulative Practice Problem Set pdf docx
Cool Down (log in)'
Teacher Guide (log in)'
Teacher Presentation Materials pdf docx

Additional Resources

Google Slides (log in)'
PowerPoint Slides (log in)'