# Lesson 6

Usemos una decena para sumar hasta 1,000

## Warm-up: Conversación numérica: Números que forman 10 (10 minutes)

### Narrative

The purpose of this Number Talk is to elicit strategies and understandings students have for making a ten when adding a two-digit number to a two-digit number. In the synthesis, the focus is on how knowing number combinations to make ten can support finding the value of each sum. For example: $$28 + 2$$ can help students think about $$28 + 12$$ as $$28 + 2 + 10$$. These understandings help students develop fluency and will be helpful when students need to add 2 three-digit numbers that require composing units when adding by place. As students share their thinking, consider recording on an open number line.

### Launch

• Display one expression.
• “Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
• 1 minute: quiet think time

### Activity

• Record students’ thinking on an open number line and with equations.
• Keep expressions and work displayed.
• Repeat with each expression.

### Student Facing

Encuentra mentalmente el valor de cada expresión.

• $$28 + 2$$
• $$28 + 12$$
• $$67 + 3$$
• $$67 + 23$$

### Activity Synthesis

• “¿En qué se parecen todas las expresiones?” // “What’s the same about all of the expressions?” (I made a ten to find the value for each of them.)
• “¿Por qué $$28 + 2$$ y $$67 + 3$$ ayudan a encontrar el valor de las otras expresiones?” // “Why are $$28 + 2$$ and $$67 + 3$$ helpful in finding the value of the other expressions?” (We made ten and then added 1 more ten.)
• “En la siguiente actividad, vamos a seguir pensando en cómo nos puede ayudar sabernos las sumas de 10” // “In the next activity, we are going to keep thinking about how knowing sums of 10 can help us.”

## Activity 1: Sumemos números de dos dígitos y de tres dígitos (15 minutes)

### Narrative

The purpose of this activity is for students to add two-digit numbers and three-digit numbers that require composing a ten when adding by place. In this activity, students work in groups of 3 and each find the value of a different set of sums. They may use any method that makes sense to them to add and the number choices in each set encourage them to apply methods they have used when adding within 100, including those based on making a ten, counting on by place, and adding tens to tens and ones to ones. In the synthesis, students share the patterns they notice in the sums and their values. Look for opportunities to highlight the ways students notice that the sum of the ones is 10 in each expression to prepare them for the next activity.

### Required Materials

Materials to Gather

• Groups of 3

### Activity

• “En su grupo, cada uno de ustedes va a encontrar el valor de un conjunto de expresiones” // “In your group, each of you will find the value of one set of expressions.”
• Make sure students know which set they will work with.
• “Mientras trabajan, piensen sobre los patrones que observan” // “As you work, think about patterns you notice.”
• “Si les ayuda, pueden usar bloques en base diez” // “If it helps, you may use base-ten blocks.”
• 6 minutes: independent work time
• “Comparen con los miembros de su grupo y discutan los patrones que observaron” // “Compare with your group members and discuss any patterns you noticed.”
• 4 minutes: partner discussion

### Student Facing

1. Encuentra el valor de cada suma.

Conjunto 1

Conjunto 2

Conjunto 3

$$245 + 15$$

$$134 + 26$$

$$351 + 19$$

$$247 + 23$$

$$133 + 37$$

$$356 + 24$$

$$249 + 31$$

$$138 + 42$$

$$355 + 35$$

2. ¿Qué patrones observaste?

### Student Response

If students find a sum other than the sum of the two numbers, consider asking:

• “¿Puedes explicar cómo encontraste la suma?” // “Can you explain how you found the sum?”
• “¿Cómo puedes usar una recta numérica o bloques en base diez para mostrar cómo pensaste?” // “How could you use a number line or base-ten blocks to show your thinking?”

### Activity Synthesis

• “¿Qué patrones observaron en cada conjunto?” // “What patterns did you notice in each set?” (Each time we could make a ten with the ones. The number of hundreds didn't change. The sums went up by 10.)
• Share and record responses.
• “Saben que $$6 + 4 = 10$$. ¿Cómo les ayuda eso a pensar en $$536 + 34$$?” // “How does knowing $$6 + 4 = 10$$ help you think about $$536 + 34$$?” (I can add $$530 + 30 = 560$$. Then add 10 because I know $$6 + 4 = 10$$.)

## Activity 2: Clasificación de tarjetas: Decena perfecta (20 minutes)

### Narrative

The purpose of this activity is for students use what they know about combinations of 10 to identify when a ten will be composed when adding a three-digit number and a two-digit number by place.  Students are given a set of cards with three-digit numbers and two-digit numbers and work with their group to decide which numbers will make a ten with no extra ones when they are added together (a “perfect ten”). After finding all the matches, each group member chooses a pair and finds the value of the sum. In the synthesis, students discuss how they could tell a pair of numbers would make a ten by looking at the digits in the ones place. In upcoming lessons, students will use this understanding to anticipate when they may need to compose units when they add 2 three-digit numbers.

When they match numbers whose ones combine to make ten students look for and identify structure which can be helpful when finding sums (MP7).

MLR2 Collect and Display. Circulate, listen for, and collect the place value language students use as they match cards to make a perfect ten. On a visible display, record words and phrases such as: compose, decompose, group ten ones, and make a new ten. Invite students to borrow language from the display as needed, and update it throughout the lesson.
Action and Expression: Develop Expression and Communication. Synthesis. Identify connections between strategies that result in the same outcomes but use differing approaches.
Supports accessibility for: Conceptual Processing

### Required Materials

Materials to Gather

Materials to Copy

• Card Sort Perfect 10

### Required Preparation

• Create a set of cards from the blackline master for each group of 3.

### Launch

• Groups of 3–4
• Give each group a set of cards and access to base-ten blocks.

### Activity

• “Este grupo de tarjetas incluye números de tres dígitos y números de dos dígitos. Emparejen cada número de tres dígitos con un número de dos dígitos, de tal manera que cuando los sumen formen una decena sin unidades adicionales. Cuando esto ocurre, vamos a decir que dos números forman una ‘decena perfecta’” // This set of cards includes three-digit numbers and two-digit numbers. Match each three-digit number to a two-digit number, so that when you add them together they will make a ten with no extra ones. When this happens, we are going to say the two numbers make a ‘perfect ten.’”
• “Con su pareja, justifiquen sus elecciones” // Work with your partner to justify your choices.”
• As needed, provide an example of two numbers that make a “perfect ten” from the previous activities.
• “Después de encontrar todas las parejas, cada miembro del equipo debe escoger una pareja de números diferente y encontrar su suma” // “After finding all the matches, each group member should choose a different pair of numbers and find their sum.”
• “Si queda tiempo, intercambien las tarjetas o escojan otra pareja de números” // “If there is time, switch cards or pick another pair.”
• 15 minutes: small-group work time
• Monitor for groups who focus on finding combinations of 10 in the ones place and explain their reasoning.
• Monitor for students to share how they add their pair of numbers to share in the lesson synthesis.

### Student Facing

1. Empareja cada número de tres dígitos con un número de dos dígitos. Cuando sumes tus números, ellos deben formar una decena sin unidades adicionales.
2. Escoge 1 pareja de números y encuentra el valor de su suma. Muestra cómo pensaste.

### Activity Synthesis

• Invite groups to share the matches they made and how they know those cards go together.
• Attend to the language that students use to describe their matches, giving them opportunities to describe how they knew adding the numbers would result in composing a ten with no extra ones more precisely.

## Lesson Synthesis

### Lesson Synthesis

“Hoy aprendieron que cuando le suman un número de dos dígitos a un número de tres dígitos, saberse las sumas de 10 puede ayudarlos a saber si deberán componer una decena” // “Today you learned that when you add a two-digit number to a three-digit number, knowing sums of 10 can help you tell if you will need to compose a ten.”

Invite previously identified students to share how they found the value of their sums.

Share and record responses.