# Lesson 10

Escribamos expresiones y ecuaciones para representar arreglos

## Warm-up: Verdadero o falso: Expresiones que representan arreglos (10 minutes)

### Narrative

The purpose of this True or False is to elicit strategies and understandings students have for expressions with equal addends. Arrays are displayed for the first 2 equations as a support for students to explain how they know the equations are true.

### Launch

• Display one statement.
• “Hagan una señal cuando sepan si la afirmación es verdadera o no, y puedan explicar cómo lo saben” // “Give me a signal when you know whether the statement is true and can explain how you know.”
• 1 minute: quiet think time

### Activity

• Share and record answers and strategies.
• Repeat with each statement.

### Student Facing

Decide si cada afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.

• $$2 + 2 + 2 = 3 + 3$$
• $$4 + 4 + 4 = 3 + 3 + 3 + 3$$
• $$5 + 5 + 5 = 3 + 3 + 3$$

### Activity Synthesis

• Arrange counters to show 5 rows of 3 counters:
• “¿Cómo podemos hacer que la última afirmación sea verdadera basándonos en este arreglo? Expliquen” // “How could we make the last statement true based on this array? Explain.” (To make this true we need $$3 + 3 + 3 + 3 + 3$$. I know that if $$5 + 5 + 5$$ means 3 columns of 5, there would be 5 rows of 3.)

## Activity 1: Construyamos arreglos y escribamos ecuaciones (15 minutes)

### Narrative

The purpose of this activity is for students to write equations that represent the number of objects in the rows or columns of an array. In a previous lesson, students matched arrays to expressions. In this activity, they write their own equations and describe how each equal addend represents the number of counters in each row or each column.

MLR2 Collect and Display. Synthesis: Direct attention to words collected and displayed from the previous lesson. Invite students to borrow language from the display as needed, and update it throughout the lesson.
Action and Expression: Develop Expression and Communication. Invite students to show thinking using red and yellow counters. For example, show the rows using red in the first row, yellow in the second row, red in the third row, yellow in the 4th row, and so on. Then have students represent the columns using the two colors as well. This shows a concrete representation for each number in an expression.
Supports accessibility for: Conceptual Processing, Organization

### Required Materials

Materials to Gather

### Launch

• Groups of 2
• Give students counters.

### Activity

• “Primero, organicen fichas para hacer un arreglo. Después, escriban una ecuación que tenga sumandos iguales. Hay 2 ecuaciones que corresponden a cada arreglo. Para encontrar el número total de fichas, pueden usar cualquier método que tenga sentido para ustedes” // “First, you will arrange counters to make an array. Then you will write an equation that has equal addends. There are 2 equations that match each array. To find the total number of counters, you can use any method that makes sense to you.”
• 6 minutes: independent work time
• “Trabajen con un compañero en el problema número 3. Cada uno debe hacer su propio arreglo y seguir las instrucciones. Después, muéstrenle su arreglo a su compañero y permitan que responda las mismas preguntas. Comprueben si están de acuerdo en las respuestas” //  “For number 3, work with a partner. You should each make your own array and follow the steps. Then show your partner your array and let them answer the same questions. Check to see if you agree.”
• 6 minutes: partner work time
• Monitor for students to share different equations for an array they create that uses between 6 and 24 counters.

### Student Facing

1. Usa 20 fichas para hacer un arreglo que tenga 4 filas.
1. ¿Cuántas columnas tiene tu arreglo?
2. Llena los espacios para completar ecuaciones que representen el arreglo. Cada ecuación debe tener sumandos iguales.

$$\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}=\underline{\hspace{1 cm}}$$

$$\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}=\underline{\hspace{1 cm}}$$

2. Usa 15 fichas para hacer un arreglo que tenga 3 columnas.
1. ¿Cuántas filas tiene tu arreglo?
2. Llena los espacios para completar ecuaciones que representen el arreglo. Cada ecuación debe tener sumandos iguales.

$$\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}=\underline{\hspace{1 cm}}$$

$$\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}+\underline{\hspace{1 cm}}=\underline{\hspace{1 cm}}$$

3. Escoge un número par de fichas, de 6 a 24. Haz un arreglo con ellas.
1. ¿Cuántas filas tiene tu arreglo?
2. ¿Cuántas columnas tiene tu arreglo?
3. Escribe ecuaciones que representen el arreglo. Cada ecuación debe tener sumandos iguales.

### Student Response

If students create equations that do not match their array, consider asking:
• “¿Cómo corresponden los sumandos de tu ecuación a tu arreglo?” // “How do the addends in your equation match your array?”
• “¿Cómo corresponde el número de sumandos de tu ecuación a tu arreglo?” // “How does the number of addends in your equation match your array?”
• “¿La suma de tu ecuación corresponde al número total de fichas?” // “Does the sum of your equation match the total number of counters?”

### Activity Synthesis

• Invite previously identified students to share their arrays and ask others to decide how many rows and columns the student’s array could have.
• “_____ escribió esta ecuación. ¿Cuántas filas y cuántas columnas podría tener el arreglo de _____?” // “_____ wrote this equation. How many rows and columns could _____’s array have?”

## Activity 2: Organicemos verduras haciendo arreglos (20 minutes)

### Narrative

The purpose of this activity is for students to practice writing equations with equal addends to represent the number of objects in each row or column of an array. They create arrays based on the context of a vegetable garden and compare different arrangements of their crops (MP2).

### Required Materials

Materials to Gather

### Launch

• Groups of 2
• “¿Qué saben sobre el cultivo de las plantas?” // “What do you know about growing plants?” (Plants need soil, water, and sunlight. You can grow plants to eat them. You can grow flowers. Plants can grow inside or outside.)
• 1 minute: quiet think time
• 1–2 minutes: partner discussion
• Share responses.
• “¿Cómo se organizan las plantas en las huertas o en los campos?” // “How are plants arranged in gardens or in fields?” (Sometimes the same plants are together. Flowers might be mixed up to make a design. On a farm, some plants are arranged in rows.)

### Activity

• “Un agricultor local necesita ayuda para organizar sus cultivos en la huerta. Dependiendo del número de vegetales sembrados, dibujen arreglos que muestren cómo se puede organizar cada cultivo. Usen fichas si les ayuda” // “The local farmer needs help arranging crops in the vegetable garden. Based on the number of veggies planted, draw arrays to show how each crop could be arranged. Use counters if it helps.”
• 10 minutes: independent work time
• Monitor for a variety of ways students arrange the 16 carrot seeds, including 4 rows of 4.

### Student Facing

1. Haz un arreglo que muestre cómo sembrar 9 papas. Dibújalo.
Escribe una ecuación que represente tu arreglo.

2. Haz un arreglo que muestre cómo sembrar 16 semillas de zanahoria. Dibújalo.
Escribe una ecuación que represente tu arreglo.

3. Haz un arreglo que muestre cómo sembrar 15 papas. Dibújalo.
Escribe una ecuación que represente tu arreglo.

4. Haz un arreglo que muestre cómo sembrar 12 semillas de zanahoria. Dibújalo.
Escribe una ecuación que represente tu arreglo.

### Student Response

If students represent the crops using one row or multiple rows with 1 in each, consider asking:

• “¿Hay otra forma de organizar los cultivos para que haya por lo menos 2 filas?” // “Is there another way to arrange the crops so there are at least 2 rows?”

### Activity Synthesis

• Invite 2–3 previously identified students to share how they arranged 16 carrot seeds. Select the student who arranged in 4 rows of 4 carrots seeds last.
• If no student arranged the carrots seeds in 4 rows, arrange counters to show 4 rows of 4 counters.
• “¿Qué ecuación con sumandos iguales representa el arreglo?” // “What equation would represent the array using equal addends?” ($$4 + 4 + 4 + 4 = 16$$)
• “¿Los sumandos representan el número de semillas de zanahoria que hay en cada fila o en cada columna?” // “Do the addends represent the number of carrot seeds in each row or in each column?” (It could represent both.)
• “¿Pueden encontrar otra ecuación que muestre el número que hay en cada fila o en cada columna?” // “Can you find another equation that shows the number in each row or each column?” (No, since there are the same number of rows and columns, there is only one equation.)

## Lesson Synthesis

### Lesson Synthesis

“Hoy aprendimos que podemos escribir ecuaciones para mostrar la suma del número de objetos que hay en las filas o en las columnas de los arreglos” // “Today you learned that you can write equations to show the sum of the number of objects in rows or columns of arrays.”

Arrange counters to show:

“Elena escribió la ecuación $$6 + 6 = 12$$ para representar el número de objetos que hay en este arreglo. ¿Están de acuerdo? Expliquen” // “Elena wrote $$6 + 6 = 12$$ as an equation to represent the number of objects in this array. Do you agree? Explain.” (Yes, but it doesn’t show the number in the rows or the number in the columns. $$6 + 6$$ can help us find the total, but the equations $$4 + 4 + 4 = 12$$ or $$3 + 3 + 3 + 3 = 12$$ show the sum of the rows or columns.)